Форум программистов, компьютерный форум, киберфорум
Наши страницы

Assembler, MASM, TASM

Войти
Регистрация
Восстановить пароль
 
 
Рейтинг: Рейтинг темы: голосов - 1, средняя оценка - 5.00
Mikl___
Автор FAQ
11211 / 5867 / 523
Регистрация: 11.11.2010
Сообщений: 10,893
26.01.2013, 14:45  [ТС] #91
Win32 API. Урок 35. Подсветка синтаксиса в RichEdit
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
4
Вложения
Тип файла: zip tut35.zip (26.7 Кб, 70 просмотров)
Надоела реклама? Зарегистрируйтесь и она исчезнет полностью.
Similar
Эксперт
41792 / 34177 / 6122
Регистрация: 12.04.2006
Сообщений: 57,940
26.01.2013, 14:45
Я подобрал для вас темы с готовыми решениями и ответами на вопрос Сам себе Iczelion (Assembler):

Обсуждение темы "Сам себе Iczelion" - Assembler
Win32 API. Урок 1. Основы Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c...

создать програму которая содержит в себе команды обработки строк языка асемблер - Assembler
Создать програму которая содержит в себе команды обработки строк языка асемблер. Выполнить введение строки из 40 символов. Слова в строке...

Регистры eax & edx сами по себе принимают непонятные значения - Assembler
Задача программы сортировка массива состоящего из 5ти двойных слов. Ассемблер конечно сортирует, но только максимум 3 первых числа, а 2...

Вырубается ПК сам по себе - Компьютер
Нужна помощь в проблеме. Пару недель назад кулер в БП сильно шумел время от времени, я решил почистить пк. Почистил ПК от пыли полностью,...

Запрос сам в себе - Базы данных
Ребята, вот например есть таблица Name Time a 12-04-2011 a 14-04-2011 a 05-04-2011 b...

Выключается сам по себе - Компьютер
После очистки компа от пыли (снимал кулер, проц, оперативку и видюху, так же менял термопасту). Я нажимаю на кнопку Power, происходит...

116
Rockphorr
0 / 0 / 0
Регистрация: 23.01.2013
Сообщений: 1
27.01.2013, 01:42 #92
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
0
Mikl___
Автор FAQ
11211 / 5867 / 523
Регистрация: 11.11.2010
Сообщений: 10,893
27.01.2013, 04:53  [ТС] #93
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
0
Изображения
 
Mikl___
Автор FAQ
11211 / 5867 / 523
Регистрация: 11.11.2010
Сообщений: 10,893
27.01.2013, 06:14  [ТС] #94
Win32 API. Урок 35 a. Подсветка синтаксиса в RichEdit
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
4
Вложения
Тип файла: zip tut35a.zip (21.5 Кб, 56 просмотров)
Mikl___
Автор FAQ
11211 / 5867 / 523
Регистрация: 11.11.2010
Сообщений: 10,893
28.01.2013, 13:33  [ТС] #95
Win32 API. Урок 36a. Простейший проигрыватель AVI-файлов
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
3
Миниатюры
Сам себе Iczelion  
Вложения
Тип файла: zip tut36a.zip (1.4 Кб, 64 просмотров)
Mikl___
Автор FAQ
11211 / 5867 / 523
Регистрация: 11.11.2010
Сообщений: 10,893
29.01.2013, 04:55  [ТС] #96
Win32 API. Урок 36b. Чуть более сложный проигрыватель AVI-файлов
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
4
Миниатюры
Сам себе Iczelion   Сам себе Iczelion  
Вложения
Тип файла: zip tut36b.zip (19.5 Кб, 74 просмотров)
Mikl___
Автор FAQ
11211 / 5867 / 523
Регистрация: 11.11.2010
Сообщений: 10,893
29.01.2013, 05:10  [ТС] #97
Win32 API. Урок 36c. Нормальный проигрыватель AVI-файлов
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
4
Вложения
Тип файла: zip tut36e.zip (4.0 Кб, 49 просмотров)
Mikl___
Автор FAQ
11211 / 5867 / 523
Регистрация: 11.11.2010
Сообщений: 10,893
29.01.2013, 10:32  [ТС] #98
Win32 API. Урок 36 d. Проигрываем AVI-файлы через ShellExecute
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
3
Mikl___
Автор FAQ
11211 / 5867 / 523
Регистрация: 11.11.2010
Сообщений: 10,893
29.01.2013, 11:05  [ТС] #99
Win32 API. Урок 36 e. Проигрываем AVI-файлы
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
3
Вложения
Тип файла: zip tut37i.zip (5.0 Кб, 47 просмотров)
Mikl___
Автор FAQ
11211 / 5867 / 523
Регистрация: 11.11.2010
Сообщений: 10,893
30.01.2013, 04:38  [ТС] #100
ODBC. Урок 37. Основы ODBC
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
3
Миниатюры
Сам себе Iczelion  
Mikl___
Автор FAQ
11211 / 5867 / 523
Регистрация: 11.11.2010
Сообщений: 10,893
30.01.2013, 06:53  [ТС] #101
ODBC. Урок 37. Соединение с базой данных
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
3
Mikl___
Автор FAQ
11211 / 5867 / 523
Регистрация: 11.11.2010
Сообщений: 10,893
30.01.2013, 08:45  [ТС] #102
ODBC. Урок 37. Подготовка и Использование Инструкций
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
3
Mikl___
Автор FAQ
11211 / 5867 / 523
Регистрация: 11.11.2010
Сообщений: 10,893
30.01.2013, 08:48  [ТС] #103
ODBC. Урок 37. Возвращаемые величины
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
3
Mikl___
Автор FAQ
11211 / 5867 / 523
Регистрация: 11.11.2010
Сообщений: 10,893
30.01.2013, 08:56  [ТС] #104
ODBC. Урок 37. ODBC пример
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
4
Вложения
Тип файла: zip odbc5.zip (22.5 Кб, 55 просмотров)
Mikl___
Автор FAQ
11211 / 5867 / 523
Регистрация: 11.11.2010
Сообщений: 10,893
30.01.2013, 10:03  [ТС] #105
ODBC. Урок 37 a. Улучшаем ODBC пример
Кликните здесь для просмотра всего текста
Этот Урок предполагает, что читатель знает, как использовать MASM. Если вы не знакомы с MASM, скачайте c masm32.com и прочитайте текст, входящий в состав пакета, прежде чем продолжать чтение этого введения. Хорошо. Теперь вы готовы. Давайте приступим.
ТЕОРИЯ ― МАТЬ СКЛЕРОЗА
Win32 программы выполняются в защищенном режиме, который доступен начиная с 80286. Hо 80286 теперь история. Поэтому мы предполагаем, что имеем дело только с 80386 и его потомками. Windows запускает каждую Win32 программу в отдельном виртуальном пространстве. Это означает, что каждая Win32 программа будет иметь 4-х гигабайтовое адресное пространство.
Hо это вовсе не означает, что каждая программа имеет 4 гигабайта физической памяти, а только то, что программа может обращаться по любому адресу в этих пределах. Windows сделает все необходимое, чтобы сделать память, к которой программа обращается "существующей". Конечно, программа должна придерживаться правил, установленных Windows, или это вызовет General protection Fault.

Каждая программа одна в своем адресном пространстве, в то время как в Win16 дело обстоит не так. Все Win16 программы могут "видеть" друг друга, что невозможно в Win32. Этот особенность помогает снизить шанс того, что одна программа запишет что-нибудь поверх данных или кода другой программы.

Модель памяти также коренным образом отличается от существующих в старом мире 16-битных программ. Под Win32, мы больше не должны беспокоиться о моделях памяти или сегментах! Теперь только одна модель память: Плоская модель памяти. Теперь нет больше 64K сегментов. Память теперь это большое последовательное 4-х гигабайтовое пространство. Это также означает, что вы не должны "играть" с сегментными регистрами. Вы можете использовать любой сегментный регистр для адресации к любой точке памяти. Это ОГРОМНОЕ подспорье для программистов. Это то, что делает программирование на ассемблере под Win32 таким же простым, как на C.

Когда вы программируете под Win32, вы должны помнить несколько важных правил.
Одно из таких правил то, что Windows использует esi, edi, ebp и ebx внутренне и не ожидает, что значение в этих регистрах меняются. Так что помните это правило: если вы используете какой-либо из этих четырех регистров в вызываемой функции, не забудьте восстановить их перед возвращением управления Windows.
Вызываемая (callback) функция - это функция, которая вызывается Windows.
Очевидный пример - процедура окна. Это не значит, что вы не можете использовать эти четыре регистра. Просто не забудьте восстановить их значения перед передачей управления Windows.
ПРАКТИКА ― МАТЬ ШИЗОФРЕНИИ
Вот каркасная программа. Если что-то из кода вы не понимаете, не паникуйте. В дальнейшем я все объясню.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
.386
.MODEL Flat, STDCALL
.DATA
   <Ваша инициализируемые данные>
   ......
.DATA?
   <Ваши не инициализируемые данные>
   ......
.CONST
   <Ваши константы>
   ......
.CODE
<метка>:
   <Ваш код>
   ......
end <метка>
Вот и все! Давайте проанализируем этот "каркас".
Assembler
1
.386
Это ассемблерная директива, говорящая ассемблеру использовать набор операций для процессора 80386. Вы также можете использовать .486, .586, .686 но самый безопасный выбор ― это указывать .386. Также есть два практически идентичных выбора для каждого варианта CPU. .386/.386p, .486/.486p. Эти "p"-версии необходимы только тогда, когда ваша программа использует привилегированные инструкции, то есть инструкции, зарезервированные процессором/операционной системой для работы в защищенном режиме. Они могут быть использованы только в защищенном коде, например, sys-драйверами. Как правило, ваши программы будут работать в непривилегированном режиме, так что лучше использовать не-"p" версии.
Assembler
1
.MODEL FLAT, STDCALL
.MODEL ― ассемблерная директива, определяющая модель памяти вашей программы. Под Win32 есть только одна ― плоская модель.
STDCALL говорит MASM'у о порядке передачи параметров, слева направо или справа налево, а также о том, кто уравнивает стек, после того как функция вызвана.
Под Win16 существует два типа передачи параметров, C и PASCAL. По C-договоренности, параметры передаются справа налево, то есть самый правый параметр кладется в стек первым. Вызывающий должен уравнять стек после вызова. Например, при вызове функции с именем foo(int first_param, int second_param, int third_param), используя C-передачу параметров, ассемблерный код будет выглядеть так:
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
push [third_param]  ; Положить в стек третий параметр
push [second_param] ; Следом - второй
push [first_param]  ; И, наконец, первый
call foo
add  esp, 12         ; Вызывающий уравнивает стек

PASCAL-передача параметров ― это C-передача наоборот. Согласно ей, параметры передаются слева направо и вызываемый параметр должен уравнивать стек.
Win16 использует этот порядок передачи данных, потому что тогда код программы становится меньше. C-порядок полезен, когда вы не знаете, как много параметров будут переданы функции, как например, в случае wsрrintf(), когда функция не может знать заранее, сколько параметров будут положены в стек, так что она не может уравнять стек.
STDCALL - это гибрид C и PASCAL вызовов. Согласно ему, данные передаются справа налево, но вызываемая функция ответственна за очистку стека от переданных ей параметров. Платформа Win32 использует исключительно STDCALL, хотя есть одно исключение -- функция wsprintf(). Вы должны следовать C-порядку вызова в случае wsprintf().
Кликните здесь для просмотра всего текста
Assembler
1
2
3
4
5
6
7
.DATA
 
.DATA?
 
.CONST
 
.CODE
Все четыре директивы это то, что называется секциями. Вы помните, что в Win32 нет сегментов? Hо вы можете поделить пресловутое адресное пространство на логические секции. Начало одной секции отмечает конец предыдущей. Есть две группы секций: данных и кода.
.DATA ― Эта секция содержит инициализированные данные вашей программы.
.DATA? ― эта секция содержит неинициализированные данные вашей программы. Иногда вам нужно только "предварительно" выделить некоторое количество памяти, но вы не хотите инициализировать ее. Эта секция для этого и предназначается. Преимущество неинициализированных данных следующее: они не занимают места в исполняемом файле. Например, если вы хотите выделить 10000 байт в вашей .DATA? секции, ваш exe-файл не увеличится на 10kb. Его размер останется таким же. Вы, всего лишь, говорите компилятору, сколько места вам нужно, когда программа загрузится в память.

.CONST ― эта секция содержит объявления констант, используемых программой. Константы не могут быть изменены ей. Это всего лишь "константы".
Вы не обязаны задействовать все три секции. Объявляйте только те, которые хотите использовать.
Есть только одна секция для кода: .CODE, там где содержится весь код.
Кликните здесь для просмотра всего текста
Assembler
1
2
3
<метка>:
.....
end <метка>
где <метка> ― любая произвольная метка, устанавливающая границы кода. Обе метки должны быть идентичны. Весь код должен располагаться между
Assembler
1
<метка>
и
Assembler
1
end <метка>


© Iczelion, пер. Aquila
3
Вложения
Тип файла: zip ODBCnew.zip (13.0 Кб, 54 просмотров)
30.01.2013, 10:03
MoreAnswers
Эксперт
37091 / 29110 / 5898
Регистрация: 17.06.2006
Сообщений: 43,301
30.01.2013, 10:03
Привет! Вот еще темы с ответами:

ПК сам по себе перезагружается - Компьютер
Добрый вечер,у меня такая же проблема,сам себе перезагружается,без синего экрана,без зависаний,просто раз и потух на доли...

Компьютер отключается сам по себе !!! - Блоки питания
Проблема такая недавно купил себе новый бп всё работало прекрасно 1 неделю а вот сейчас он не стого не всего начал сам выключаться слышно...

Компьютер выключается сам по себе - Компьютер
Примерно полгода назад комп начал выключаться произвольно и не включался некоторое время,но если вытянуть шнур питания из блока на ~10-15...

сам по себе выключается комп - Windows 7
на компе стояла винда хр, снес и поставил семерку, с тех пор комп стал сам выключатся. в чем может быть причина? может блок питания? как...


Искать еще темы с ответами

Или воспользуйтесь поиском по форуму:
105
Ответ Создать тему
Опции темы

КиберФорум - форум программистов, компьютерный форум, программирование
Powered by vBulletin® Version 3.8.9
Copyright ©2000 - 2018, vBulletin Solutions, Inc.
Рейтинг@Mail.ru