Форум программистов, компьютерный форум, киберфорум
Наши страницы
SETI25
Войти
Регистрация
Восстановить пароль
Оценить эту запись

Описание проекта Einstein@Home

Запись от SETI25 размещена 07.09.2019 в 14:37

Описание проекта Einstein@Home

Einstein@Home — проект добровольных вычислений на платформе BOINC по проверке гипотезы Эйнштейна о существовании гравитационных волн, которые были обнаружены 100 лет спустя (в сентябре 2015 года). В ходе выполнения проекта первоначальная цель была расширена: в настоящее время проект занимается также поиском пульсаров по данным радио- и гамма-телескопов. Проект стартовал в рамках Всемирного года физики 2005 и координируется Университетом Висконсина-Милуоки (Милуоки, США) и Институтом гравитационной физики им. Макса Планка (Ганновер, Германия), руководитель — Брюс Аллен. С целью проверки гипотезы проводится составление атласа гравитационных волн, излучаемых быстро вращающимися неосесимметричными нейтронными звездами (пульсарами), качающимися (англ. wobbling star), аккрецирующими (англ. accreting star) и пульсирующими звездами (англ. oscillating star). Данные для анализа поступают с Лазерно-интерферометрической гравитационно-волновой обсерватории (LIGO) и GEO600. Кроме проверки общей теории относительности Эйнштейна и получения ответов на вопросы «Распространяются ли гравитационные волны со скоростью света?» и «Чем они отличаются от электромагнитных волн?», прямое обнаружение гравитационных волн будет также представлять собой важный новый астрономический инструмент (большинство нейтронных звезд не излучают в электромагнитном диапазоне и гравитационные детекторы способны привести к открытию целой серии ранее неизвестных нейтронных звезд). Наличие же экспериментальных доказательств отсутствия гравитационных волн известной амплитуды от известных источников поставит под сомнение саму общую теорию относительности и понимание сущности гравитации.

С марта 2009 года часть вычислительной мощности проекта используется для анализа данных, полученных консорциумом PALFA с радиотелескопа Обсерватории Аресибо (Пуэрто-Рико), на предмет поиска радиопульсаров в двойных звездных системах. В ходе анализа были обнаружены 2 новых ранее неизвестных радиопульсара — PSR J2007+2722 (2010) и PSR J1952+2630 (2011). Анализ данных радиотелескопа обсерватории Паркс (Австралия) позволил открыть в 2011—2012 годах 23 ранее неизвестных радиопульсара. При обработке новой порции данных, полученных Обсерваторией Аресибо в 2011—2012 гг. с использованием широкополосного спектрометра «Mock», в 2011—2015 годах открыты 28 новых радиопульсаров. Общее количество открытых радиопульсаров — 54. В 2013—2016 гг. в ходе анализа данных с гамма-телескопа GLAST были открыты 18 гамма-пульсаров. Сентябрь 2015 - первое в истории прямое обнаружение гравитационных волн. Добровольцы, чьи компьютеры участвовали в открытии пульсаров, получают от организаторов проекта памятный сертификат.

Стратегия поиска


Основной задачей расчетов является выделение полезного сигнала (интерференционной картины) из шума, который является следствием тепловых колебаний атомов в зеркалах, квантовой природы света, сейсмических движений земной коры или резонансных колебаний нитей, на которых подвешена оптика. Процесс обнаружения осложняется также влиянием вращения Земли вокруг Солнца и вокруг своей оси, в совокупности вызывающими сдвиг частоты сигнала из-за эффекта Доплера. При обработке данных выполняется согласованная фильтрация сигнала, требующая сопоставления зашумленного образца с эталонным, и производится сравнение десятичасовых отрезков наблюдений («сегментов» на интерферометре с теоретически предсказанной картиной, которую должны создавать гравитационные волны, идущие от вращающихся нейтронных звёзд, предположительно располагающихся на определенных участках небесной сферы. Подобные гравитационные волны являются непрерывными (англ. continuous-wave, CW), имеют постоянную амплитуду и являются квази-монохроматическими (имеют незначительное уменьшение частоты с течением времени). В ходе расчетов используется достаточно густая сетка (30 000 узлов), охватывающая все небо (предполагается, что пульсар может находиться в любой точке небесной сферы в узлах сетки), а также перебираются различные частоты и скорости их изменения (фактически производные от частоты).

При помощи оконного преобразования Фурье (англ. Short Fourier Transform, SFT) получасовые фрагменты данных с гравитационного телескопа разбиваются на набор из 2901 SFT-файла (каждый файл, обрабатываемый на машине пользователя, перекрывает частоту спектра в 0,8 Гц: 0,5 Гц полезных данных плюс боковые лепестки), что в совокупности покрывает диапазон частот от 50 до 1500,5 Гц. Помехи, создаваемые самим инструментом, по возможности удаляются (заменяются гауссовым белым шумом) по априорно известным линиям в спектре, специфичном для каждого из детекторов. В результате анализа на сервер проекта передается информация о возможных претендентах, выявленных в ходе вычислений с использованием критерия Фишера (шумы инструмента подчиняются нормальному распределению Гаусса, вычисленный критерий Фишера обладает распределением \chi^2 с четырьмя степенями свободы, а его параметр нецентрированности пропорционален квадрату амплитуды гравитационной волны). Выбранные претенденты отвечают неравенству 2F > 25 (при использовании преобразования Хафа требования к кандидатам могут быть ослаблены до 2F > 5{,}2). Описанная процедура выполняется для двух различных десятичасовых блоков данных, после чего производится сравнение результатов и отсев части их них, отличающихся более чем на 1 мГц по частоте и на 0,02 рад по позиции на небесной сфере. Затем результаты отправляются на сервер проекта для постобработки, которая заключается в проверке того, что для большинства наборов данных должны быть получены совпадающие результаты (при этом в некоторых случаях возможно обнаружение ложных кандидатов в пульсары из-за наличия шумов). Постобработка результатов выполняется на вычислительном кластере Atlas, расположенном в Институте имени Альберта Эйнштейна в Ганновере и содержащем 6720 процессорных ядер Xeon QC 32xx 2,4 ГГц (пиковая производительность — 52 терафлопс, реальная — 32,8 терафлопс).

Подобным образом могут быть проанализированы не только данные гравитационных детекторов, но и наблюдения в радио-, рентгеновском и гамма-диапазоне с обнаружением пульсаров соответствующих типов.
Эксперименты BRP4, BRP4G, BRP5 (завершены)/BRP6 (PMPS XT) (активен)

21 июля 2011 года стартовал новый эксперимент (BRP4) для обработки свежей порции данных обсерватории Аресибо. Данные получены с использованием нового широкополосного спектрометра Jeff Mock (ширина принимаемого диапазона — 300 МГц, 1024 канала), названного по имени его создателя. При обработке заданий возможно использование технологии CUDA. В настоящее время в ходе обработки данных эксперимента открыты 24 и переоткрыты несколько десятков уже известных радиопульсаров. В 2013 году стартовал эксперимент BRP5, целью которого является подробное исследование рукава Персея на предмет поиска радиопульсаров. В феврале 2015 года стартовал эксперимент BRP6 (PMPS XT), целью которого является расширение области поиска радиопульсаров в сторону больших частот вращения.
https://boinc.berkeley.edu/wiki/Simple_view
https://boinc.berkeley.edu/download_all.php
Размещено в Без категории
Просмотров 24 Комментарии 0
Всего комментариев 0
Комментарии
 
КиберФорум - форум программистов, компьютерный форум, программирование
Powered by vBulletin® Version 3.8.9
Copyright ©2000 - 2019, vBulletin Solutions, Inc.