Форум программистов, компьютерный форум, киберфорум
Наши страницы
Цифровая обработка сигналов
Войти
Регистрация
Восстановить пароль
 
 
Рейтинг 4.61/36: Рейтинг темы: голосов - 36, средняя оценка - 4.61
Vantay
2 / 2 / 0
Регистрация: 18.11.2015
Сообщений: 7
1

Частотная дисперсия сигнала в цифровых фильтрах

18.11.2015, 15:05. Просмотров 6691. Ответов 92
Метки нет (Все метки)

Коллеги, приветствую!

Буду признателен за помощь в достаточно насущном (на мой взгляд) вопросе:

Дисперсионные свойства являются важнейшей характеристикой любой цифровой системы, обрабатывающей широкополосный сигнал. Они прежде всего характеризуют искажение формы сигнала на выходе фильтра за счёт разного времени (дисперсии) прохождения фильтра спектральными составляющими сигнала.

Подскажите, как оценить дисперсионные искажения сигнала цифровым фильтром при его проектировании в MATLABe или других известных пакетах проектирования ЦФ?

Возможно ли это в принципе?
1
Similar
Эксперт
41792 / 34177 / 6122
Регистрация: 12.04.2006
Сообщений: 57,940
18.11.2015, 15:05
Ответы с готовыми решениями:

Амплитудная, частотная и фазовая модуляция
День добрый форум. Получил следующее задание: Генерирование различных классов...

Импульсная и частотная характеристика, нули и полюса
Прошу помощи умных людей. Не могу вывести формулы импульсной и частотной...

Частотная модуляция с непрерывной фазой (CPFSK)
Здравствуйте. Имеется последовательность бит (1 и 0), скорость - 1000 бит в...

Извлечение сигнала заданной частоты из более сложного сигнала
Нужен совет. Предположим, у меня есть некий сложный сигнал. Я знаю, что в него...

Выборочная дисперсия
Вечер добрый! Задача следующая: А теперь вопросы: Как хранить и передавать...

92
averochkin
45 / 45 / 13
Регистрация: 05.01.2015
Сообщений: 153
18.11.2015, 22:21 2
Возможно я ошибаюсь, но использование КИХ фильтров с линейной фазовой характеристикой обеспечивает отсутствие дисперсии.
0
Владимир НН
5 / 5 / 1
Регистрация: 19.06.2015
Сообщений: 36
19.11.2015, 12:46 3
У КИХ-фильтров с линейной ФЧХ (симметричной ИХ) частотная дисперсия
сигнала, конечно, отсутствует (теоретически) - но также отсутствует
(уже практически) и селективная способность. Вопрос идёт, конечно,
по БИХ-фильтрам или КИХ-фильтрам со свободными коэффициентами.
Ведь качество любого цифрового фильтра, как известно, определяется:
- селективными свойствами, как способностью обеспечения СОВОКУПНОСТИ
требуемых функциональных показателей (характеристик: АЧХ, ФЧХ, ГВЗ..)
- быстродействием, как минимальным временем расчёта отклика ЦФ в
реальном времени
- дисперсионными свойствами, как способностью селектировать полезный
широкополосный сигнал без его искажения.
В электродинамике (в волноводах, световодах) для оценки дисперсионных
искажений введён прямой количественный показатель – коэффициент
дисперсии, как производная от времени групповой задержки по длине волны
или частоте. Точно такой же показатель, естественно, должен быть
обязательно введён и в цифровой фильтрации для прямой количественной
оценки дисперсионных искажений фильтра. Физически дисперсия D=dГВЗ/dw
характеризуют искажение формы сигнала на выходе фильтра за счёт разного
времени (дисперсии) прохождения фильтра спектральными составляющими
сигнала.
В пакетах поискового ЦНП-синтеза целочисленных цифровых фильтров (ЦЦФ)
дисперсия введена как основной функциональный показатель проектируемого
фильтра, наряду с АЧХ, ФЧХ,ГВЗ и ФЗ, что позволяет как анализировать
дисперсию заданного ЦФ, так и синтезировать ЦФ или ЦЦФ прямо по критерию
дисперсионных искажений. На рисунке дисперсионная хар-ка целочисленного
БИХ-фильтра 10-го порядка с практически нулевой (по значению) дисперсией
в полосе пропускания ФВЧ
(другие примеры дисперсионных характеристик различных ЦФ приводится
на форуме http://ru.dsplib.org/ в разделе - целочисленное проектирование
фильтров). А вот можно ли рассчитать дисперсию сигнала при
проектировании ЦФ в MATLABe ?
0
Миниатюры
Частотная дисперсия сигнала в цифровых фильтрах  
averochkin
45 / 45 / 13
Регистрация: 05.01.2015
Сообщений: 153
19.11.2015, 21:33 4
После прочтения вышеизложенного я видимо должен пойти и удавиться. Спасает одно: десятки разработанных КИХ фильтров с линейной ФЧХ, работающих в ЖИВОЙ аппаратуре и реализующих операции частотной фильтрации, интерполяции, децимации и гильбертовской фильтрации. Да, и причём тут быстродействие и поясните, что такое реальное время.
0
A_Santik
148 / 129 / 18
Регистрация: 29.04.2015
Сообщений: 626
20.11.2015, 01:53 5
А КИХ с нелинейной ФЧХ бывают? А про Гильберта, можно подробно? Ведь на КИХ Гильберта сделать трудно - хитрый БИХ куда более эффективней. Если ему только фазу 90 держать
0
averochkin
45 / 45 / 13
Регистрация: 05.01.2015
Сообщений: 153
20.11.2015, 09:27 6
Если АЧХ и ФЧХ удовлетворяют требованиям обеспечивающим действительность импульсной характеристики, то методом частотной выборки можно синтезировать КИХ фильтр с любой АЧХ и ФЧХ. Широкое использование КИХ фильтров с линейной ФЧХ связано с тем, что при решении задачи фильтрации они не вносят фазовых искажений. В этом легко убедиться если найти коэффициент передачи линии задержки (она же не вносит никаких искажений). Вы увидите, что её ФЧХ линейна. Это всё относится и к фильтрам Гильберта, только там на линейную ФЧХ накладываются соответствующие фазовые сдвиги. Чтобы всё это почувствовать желательно составить собственную программу реализующую метод частотной выборки, поработать с ней а затем переходить к MATLAB, где процедуры синтеза реализованы на очень высоком уровне. А про БИХ фильтры желательно вовсе забыть, но это исключительно моё (человека от сохи) субъективное мнение.

Добавлено через 3 минуты
P.S. Тем более что все DSP, как я понимаю, по быстродействию "заточены" под КИХ фильтрацию.
0
A_Santik
148 / 129 / 18
Регистрация: 29.04.2015
Сообщений: 626
20.11.2015, 14:35 7
averochkin, а не приведёте пример КИХ-фильтра с нелинейной фазой?
0
averochkin
45 / 45 / 13
Регистрация: 05.01.2015
Сообщений: 153
20.11.2015, 17:23 8
Давно не брал в руки шашек, но попробую.

Добавлено через 1 час 2 минуты
Простейший пример: берём интегрирующую RC цепь, дискретизируем её импульсную характеристику, берём какое-то число её отсчётов и получаем КИХ фильтр с нелинейной ФЧХ. Дискретные фильтры с линейной ФЧХ не имеют аналоговых прототипов.
0
A_Santik
148 / 129 / 18
Регистрация: 29.04.2015
Сообщений: 626
20.11.2015, 18:51 9
Цитата Сообщение от averochkin Посмотреть сообщение
Простейший пример: берём интегрирующую RC цепь, дискретизируем её импульсную характеристику, берём какое-то число её отсчётов и получаем КИХ фильтр с нелинейной ФЧХ.
Это какое-то голословное утверждение. Приведите коэффициенты такого КИХ с нелинейной ФЧХ.
0
averochkin
45 / 45 / 13
Регистрация: 05.01.2015
Сообщений: 153
20.11.2015, 19:36 10
Привожу: http://www.cyberforum.ru/cgi-bin/latex.cgi?h\left[n\right]={e}^{-\alpha n}, при http://www.cyberforum.ru/cgi-bin/latex.cgi?n=0 ... N.
0
A_Santik
148 / 129 / 18
Регистрация: 29.04.2015
Сообщений: 626
20.11.2015, 21:26 11
Я немного не то имел ввиду. Понятно, что убрав симметрию коэффициентов КИХ- фильтра можно "избавиться" от линейности ФЧХ.
Вопрос такой:
Берём фильтр Баттерворта (пусть самый простой-2 порядка) - с нелинейной АЧХ - и делаем аналог в КИХ и смотрим во что это выливается в смысле порядка (т.е. в количестве необходимых операций).
Вот БИХ 1 порядка в КИХ превращается ( при определённых параметрах), а второго - уже нет (по крайней мере я такого решения не нашёл).
0
averochkin
45 / 45 / 13
Регистрация: 05.01.2015
Сообщений: 153
21.11.2015, 08:29 12
я, собственно, ни от ничего не "избавлялся". Этот был метод инвариантной импульсной характеристики. Возьмите ЛЧМ сигнал и используйте его отсчёты в качестве весовых коэффициентов КИХ фильтра и получите фильтр с квадратичной ФЧХ.
Что касается вопроса, то может быть оно и так. Но, по-моему, сугубо субъективному мнению, вычислительные затраты КИХ и БИХ фильтрации при одинаковом качестве фильтров примерно одинаковы. Поэтому, повторяю, про БИХ фильтры лучше забыть.
0
A_Santik
148 / 129 / 18
Регистрация: 29.04.2015
Сообщений: 626
21.11.2015, 11:26 13
Цитата Сообщение от averochkin Посмотреть сообщение
про БИХ фильтры лучше забыть.
Ну это явный "перебор". Если не нужна линейность ФЧХ лучше БИХ ничего нет. Просто сравните фильтр Кауэра и КИХ с теми же параметрами подавления. Возможно коэффициенты КИХ быстрее рассчитываются прямо в микроконтроллере, что важно для фильтров с перестраиваемыми параметрами. Но довольно быстро можно и коэффициенты БИХ фильтра рассчитать.
Фильтр Гильберта в виде КИХ вообще трудно получить с приемлемыми параметрами, а БИХ в виде 2-х фильтров 8 порядка и с погрешностью сдвига фаз меньше 1 градуса - вполне реально.
0
Владимир НН
5 / 5 / 1
Регистрация: 19.06.2015
Сообщений: 36
23.11.2015, 13:08 14
Цитата Сообщение от averochkin Посмотреть сообщение
После прочтения вышеизложенного я видимо должен пойти и удавиться. Спасает одно: десятки разработанных КИХ фильтров с линейной ФЧХ, работающих в ЖИВОЙ аппаратуре и реализующих операции частотной фильтрации, интерполяции, децимации и гильбертовской фильтрации. Да, и причём тут быстродействие и поясните, что такое реальное время.
Если после каждого недостаточного знания давиться, то либо верёвки, либо мыла не хватит.
Лучше, наверное, читать поболее и мозгами шевелить - я думаю.
Вот вам два результата экспериментального измерения ФЧХ цифровых фильтров,
работающих, естественно, в реальном времени (а в каком же ещё времени работает
физически реализованный в "железе", на МК, ЦСП или ПЛИС фильтр?)
На верхнем рисунке измененная ФЧХ КИХ-фильтра с симметричной ИХ.
Вы считаете её идеально линейной? Я бы не сказал, что уж больно-то...
На нижнем рис. измененная ФЧХ целочисленного всепропускающего БИХ-фильтра
двенадцатого порядка. Вы считаете её нелинейной? (если у вас нет деревянной
линейки для проверки- могу выслать).
0
Миниатюры
Частотная дисперсия сигнала в цифровых фильтрах   Частотная дисперсия сигнала в цифровых фильтрах  
averochkin
45 / 45 / 13
Регистрация: 05.01.2015
Сообщений: 153
23.11.2015, 22:04 15
Я уже полагал что дискуссия закончилась и все остались при своём мнении, ан нет. Понятно, что сравнивать приведенные картинки невозможно, ибо ничего не известно о КИХ фильтре. Предложение, раз уж Вы исследовали, такое: в импульсной характеристике БИХ фильтра отбросить весовые коэффициенты далее будут менее 10% от максимального, построить соответствующий КИХ фильтр и сравнить ФЧХ БИХ и КИХ фильтров, затем для 1% и т.д. Я полагаю что практическое совпадение будет тогда, когда ПЕРЕХОДНЫЕ характеристики БИХ и КИХ фильтров совпадут. Это, я надеюсь, подтвердит моё интуитивное мнение о том, что вычислительные затраты БИХ и КИХ фильтров одинаковы при одинаковом качестве фильтрации. Это, ясенпень, при наличии желания, а на нет - и суда нет.
0
A_Santik
148 / 129 / 18
Регистрация: 29.04.2015
Сообщений: 626
24.11.2015, 02:04 16
Ваше "интуитивное" мнение в данном случае Вас подвело...
Надо сравнивать "самый плохой" случай.
А этим случаем является фильтр Гильберта.
Я уже много раз предлагал Товарищу из Нижнего Новгорода эту задачу.
Т.е. если простой фильтр нужен - ещё есть смысл поспорить - что выбрать БИХ или КИХ.
А на сложной задаче КИХ "не рулит"!
0
averochkin
45 / 45 / 13
Регистрация: 05.01.2015
Сообщений: 153
24.11.2015, 09:58 17
Вы чёт, это, спешите. Я говорил о двух приведенных выше картинках и соответствующих фильтрах. А это, судя по-всему, фильтры Гильберта. Только один КИХ, а второй БИХ. И если товарищ проводил анализ, то сделать то, о чём я просил не составит труда, ИМХО. И опять же, исключительно при наличии желания.
0
Владимир НН
5 / 5 / 1
Регистрация: 19.06.2015
Сообщений: 36
25.11.2015, 12:46 18
Цитата Сообщение от averochkin Посмотреть сообщение
Понятно, что сравнивать приведенные картинки невозможно, ибо ничего не известно о КИХ фильтре. Предложение, раз уж Вы исследовали, такое: в импульсной характеристике БИХ фильтра отбросить весовые коэффициенты далее будут менее 10% от максимального, построить соответствующий КИХ фильтр и сравнить ФЧХ БИХ и КИХ фильтров, затем для 1% и т.д.
Подобные забавные операции вы уж сами проводите, если делать больше нечего.
А приведёнными графиками единственно подчёркивалось, констатировалось,
что в принципе БИХ-фильтром требование линейности ФЧХ (т.е. минимальной
дисперсии сигнала) в полосе пропускания фильтра можно обеспечить
нисколько не хуже, чем КИХ-фильтром с симметрией коэффициентов
(в данном случае график ФЧХ был для целочисленного КИХ-ФНЧ с восьми
отводами при чётной симметрии коэфф-тов).
А с увеличением порядка БИХ-фильтра дисперсия сигнала в полосе может быть
понижена до минимума - самый первый график данной темы, где частотная
дисперсия на уровне единиц наносек/гц!! Даже видны шумы вычисления
арктангенса при расчёте фазы коэффициента передачи. При этом селективные
возможности БИХ-фильтра минимум на порядок будут выше.
0
averochkin
45 / 45 / 13
Регистрация: 05.01.2015
Сообщений: 153
25.11.2015, 13:59 19
Я-то, по крайней мере, не хамил.
0
Владимир НН
5 / 5 / 1
Регистрация: 19.06.2015
Сообщений: 36
25.11.2015, 16:26 20
Прошу извинения, если я Вас чем-то обидел
0
25.11.2015, 16:26
MoreAnswers
Эксперт
37091 / 29110 / 5898
Регистрация: 17.06.2006
Сообщений: 43,301
25.11.2015, 16:26

Дисперсия шума квантования
Кто-нибудь, объясните мне, почему дисперсия шума квантования равна квадрату...

моделирование цифровых схем
Как это грамотно делается? Меня не интересует использование Proteus, EWB или...

Проектирование узкополосных цифровых фильтров
Здравствуйте, требуется помощь в реализации узкополосного цифрового фильтра с...


Искать еще темы с ответами

Или воспользуйтесь поиском по форуму:
20
Ответ Создать тему
Опции темы

КиберФорум - форум программистов, компьютерный форум, программирование
Powered by vBulletin® Version 3.8.9
Copyright ©2000 - 2019, vBulletin Solutions, Inc.
Рейтинг@Mail.ru