Форум программистов, компьютерный форум, киберфорум
Наши страницы
Python: Научные вычисления
Войти
Регистрация
Восстановить пароль
 
q1w2e3r4t5y6
0 / 0 / 0
Регистрация: 06.04.2015
Сообщений: 9
1

Шифрование нейросетями или adversarial neural network in cryptography

10.03.2019, 11:35. Просмотров 312. Ответов 2

Добрый день. Наткнулся на статью 2016 года о шифрованнии и дешифровании сообщений между нейросетями. Решил воспроизвести на PyCharm с интерпритатором Python3.5, но в ответ получил кучу ошибок от оптимизатора. Уверен в коде проблем нет, но вот возможно (по-любому) у меня в настройке\установках модулей есть проблемы. Код с гитхаба и статья прилагаются. Статья во вложении

Ошибки:
Код
C:\Users\Alex\AppData\Local\Programs\Python\Python35\python.exe C:/Users/Alex/Desktop/adversarial-neural-crypt-master/adversarial_neural_cryptography.py
WARNING (theano.configdefaults): g++ not available, if using conda: `conda install m2w64-toolchain`
C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\configdefaults.py:560: UserWarning: DeprecationWarning: there is no c++ compiler.This is deprecated and with Theano 0.11 a c++ compiler will be mandatory
  warnings.warn("DeprecationWarning: there is no c++ compiler."
WARNING (theano.configdefaults): g++ not detected ! Theano will be unable to execute optimized C-implementations (for both CPU and GPU) and will default to Python implementations. Performance will be severely degraded. To remove this warning, set Theano flags cxx to an empty string.
WARNING (theano.tensor.blas): Using NumPy C-API based implementation for BLAS functions.
C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\tensor\nnet\conv.py:98: UserWarning: theano.tensor.nnet.conv.conv2d is deprecated. Use theano.tensor.nnet.conv2d instead.
  warnings.warn("theano.tensor.nnet.conv.conv2d is deprecated."
ERROR (theano.gof.opt): Optimization failure due to: local_abstractconv_check
ERROR (theano.gof.opt): node: AbstractConv2d{convdim=2, border_mode=(2, 0), subsample=(1, 1), filter_flip=True, imshp=(None, 1, None, 1), kshp=(2, 1, 4, 1), filter_dilation=(1, 1), num_groups=1, unshared=False}(InplaceDimShuffle{0,x,1,x}.0, alice_conv1_W)
ERROR (theano.gof.opt): TRACEBACK:
ERROR (theano.gof.opt): Traceback (most recent call last):
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\gof\opt.py", line 2034, in process_node
    replacements = lopt.transform(node)
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\tensor\nnet\opt.py", line 500, in local_abstractconv_check
    node.op.__class__.__name__)
theano.gof.opt.LocalMetaOptimizerSkipAssertionError: AbstractConv2d Theano optimization failed: there is no implementation available supporting the requested options. Did you exclude both "conv_dnn" and "conv_gemm" from the optimizer? If on GPU, is cuDNN available and does the GPU support it? If on CPU, do you have a BLAS library installed Theano can link against? On the CPU we do not support float16.

Traceback (most recent call last):
  File "C:/Users/Alex/Desktop/adversarial-neural-crypt-master/adversarial_neural_cryptography.py", line 183, in <module>
    outputs=decrypt_err_bob)}
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\compile\function.py", line 317, in function
    output_keys=output_keys)
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\compile\pfunc.py", line 486, in pfunc
    output_keys=output_keys)
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\compile\function_module.py", line 1839, in orig_function
    name=name)
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\compile\function_module.py", line 1519, in __init__
    optimizer_profile = optimizer(fgraph)
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\gof\opt.py", line 108, in __call__
    return self.optimize(fgraph)
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\gof\opt.py", line 97, in optimize
    ret = self.apply(fgraph, *args, **kwargs)
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\gof\opt.py", line 251, in apply
    sub_prof = optimizer.optimize(fgraph)
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\gof\opt.py", line 97, in optimize
    ret = self.apply(fgraph, *args, **kwargs)
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\gof\opt.py", line 2143, in apply
    nb += self.process_node(fgraph, node)
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\gof\opt.py", line 2039, in process_node
    lopt, node)
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\gof\opt.py", line 1933, in warn_inplace
    return NavigatorOptimizer.warn(exc, nav, repl_pairs, local_opt, node)
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\gof\opt.py", line 1919, in warn
    raise exc
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\gof\opt.py", line 2034, in process_node
    replacements = lopt.transform(node)
  File "C:\Users\Alex\AppData\Local\Programs\Python\Python35\lib\site-packages\theano\tensor\nnet\opt.py", line 500, in local_abstractconv_check
    node.op.__class__.__name__)
theano.gof.opt.LocalMetaOptimizerSkipAssertionError: AbstractConv2d Theano optimization failed: there is no implementation available supporting the requested options. Did you exclude both "conv_dnn" and "conv_gemm" from the optimizer? If on GPU, is cuDNN available and does the GPU support it? If on CPU, do you have a BLAS library installed Theano can link against? On the CPU we do not support float16.

Process finished with exit code 1
Основной код

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import theano
import theano.tensor as T
import numpy as np
import matplotlib.pyplot as plt
from layers import ConvLayer, HiddenLayer, get_all_params
from lasagne.updates import adam
 
# Parameters
batch_size = 512
msg_len = 16
key_len = 16
comm_len = 16
 
# Set this flag to exclude convolutional layers from the networks
skip_conv = False
 
# Function to generate n random messages and keys
def gen_data(n=batch_size, msg_len=msg_len, key_len=key_len):
    return (np.random.randint(0, 2, size=(n, msg_len))*2-1).\
                astype(theano.config.floatX),\
           (np.random.randint(0, 2, size=(n, key_len))*2-1).\
                astype(theano.config.floatX)
 
# Function to assess a batch by eye (see what the errors look like)
def assess(pred_fn, n=batch_size, msg_len=msg_len, key_len=key_len):
    msg_in_val, key_val = gen_data(n, msg_len, key_len)
    return np.round(np.abs(msg_in_val[0:n] - \
           pred_fn(msg_in_val[0:n], key_val[0:n])), 0)
 
# Function to get the error over just one batch
def err_over_samples(err_fn, n=batch_size):
    msg_in_val, key_val = gen_data(n)
    return err_fn(msg_in_val[0:n], key_val[0:n])
 
class StandardConvSetup():
    '''
    Standard convolutional layers setup used by Alice, Bob and Eve.
    Input should be 4d tensor of shape (batch_size, 1, msg_len + key_len, 1)
    Output is 4d tensor of shape (batch_size, 1, msg_len, 1)
    '''
    def __init__(self, reshaped_input, name='unnamed'):
        
        self.name = name
        self.conv_layer1 = ConvLayer(reshaped_input,
                                     filter_shape=(2, 1, 4, 1), #num outs, num ins, size
                                     image_shape=(None, 1, None, 1),
                                     stride=(1,1),
                                     name=self.name + '_conv1',
                                     border_mode=(2,0),
                                     act_fn='relu')
        
        self.conv_layer2 = ConvLayer(self.conv_layer1, 
                                     filter_shape=(4, 2, 2, 1),
                                     image_shape=(None, 2, None, 1),
                                     stride=(2,1),
                                     name=self.name + '_conv2',
                                     border_mode=(0,0),
                                     act_fn='relu')
        
        self.conv_layer3 = ConvLayer(self.conv_layer2, 
                                     filter_shape=(4, 4, 1, 1),
                                     image_shape=(None, 4, None, 1),
                                     stride=(1,1),
                                     name=self.name + '_conv3',
                                     border_mode=(0,0),
                                     act_fn='relu')
        
        self.conv_layer4 = ConvLayer(self.conv_layer3, 
                                     filter_shape=(1, 4, 1, 1),
                                     image_shape=(None, 4, None, 1),
                                     stride=(1,1),
                                     name=self.name + '_conv4',
                                     border_mode=(0,0),
                                     act_fn='tanh')
        
        self.output = self.conv_layer4.output
        self.layers = [self.conv_layer1, self.conv_layer2, 
                       self.conv_layer3, self.conv_layer4]
        self.params = []
        for l in self.layers:
            self.params += l.params
            
# Tensor variables for the message and key
msg_in = T.matrix('msg_in')
key = T.matrix('key')
 
# Alice's input is the concatenation of the message and the key
alice_in = T.concatenate([msg_in, key], axis=1)
 
# Alice's hidden layer
alice_hid = HiddenLayer(alice_in,
                        input_size=msg_len + key_len,
                        hidden_size=msg_len + key_len,
                        name='alice_to_hid',
                        act_fn='relu')
if skip_conv:
    alice_conv = HiddenLayer(alice_hid,
                             input_size=msg_len + key_len,
                             hidden_size=msg_len,
                             name='alice_hid_to_comm',
                             act_fn='tanh')
    alice_comm = alice_conv.output
else:
    # Reshape the output of Alice's hidden layer for convolution
    alice_conv_in = alice_hid.output.reshape((batch_size, 1, msg_len + key_len, 1))
    # Alice's convolutional layers
    alice_conv = StandardConvSetup(alice_conv_in, 'alice')
    # Get the output communication
    alice_comm = alice_conv.output.reshape((batch_size, msg_len))
 
# Bob's input is the concatenation of Alice's communication and the key
bob_in = T.concatenate([alice_comm, key], axis=1)
# He decrypts using a hidden layer and a conv net as per Alice
bob_hid = HiddenLayer(bob_in, 
                      input_size=comm_len + key_len,
                      hidden_size=comm_len + key_len,
                      name='bob_to_hid',
                      act_fn='relu')
if skip_conv:
    bob_conv = HiddenLayer(bob_hid,
                           input_size=comm_len + key_len,
                           hidden_size=msg_len,
                           name='bob_hid_to_msg',
                           act_fn='tanh')
    bob_msg = bob_conv.output
else:
    bob_conv_in = bob_hid.output.reshape((batch_size, 1, comm_len + key_len, 1))
    bob_conv = StandardConvSetup(bob_conv_in, 'bob')
    bob_msg = bob_conv.output.reshape((batch_size, msg_len))
 
# Eve see's Alice's communication to Bob, but not the key
# She gets an extra hidden layer to try and learn to decrypt the message
eve_hid1 = HiddenLayer(alice_comm, 
                       input_size=comm_len,
                       hidden_size=comm_len + key_len,
                       name='eve_to_hid1',
                       act_fn='relu')
                          
eve_hid2 = HiddenLayer(eve_hid1, 
                       input_size=comm_len + key_len,
                       hidden_size=comm_len + key_len,
                       name='eve_to_hid2',
                       act_fn='relu')
 
if skip_conv:
    eve_conv = HiddenLayer(eve_hid2,
                           input_size=comm_len + key_len,
                           hidden_size=msg_len,
                           name='eve_hid_to_msg',
                           act_fn='tanh')
    eve_msg = eve_conv.output
else:
    eve_conv_in = eve_hid2.output.reshape((batch_size, 1, comm_len + key_len, 1))
    eve_conv = StandardConvSetup(eve_conv_in, 'eve')
    eve_msg = eve_conv.output.reshape((batch_size, msg_len))
 
# Eve's loss function is the L1 norm between true and recovered msg
decrypt_err_eve = T.mean(T.abs_(msg_in - eve_msg))
 
# Bob's loss function is the L1 norm between true and recovered
decrypt_err_bob = T.mean(T.abs_(msg_in - bob_msg))
# plus (N/2 - decrypt_err_eve) ** 2 / (N / 2) ** 2
# --> Bob wants Eve to do only as good as random guessing
loss_bob = decrypt_err_bob + (1. - decrypt_err_eve) ** 2.
 
 
# Get all the parameters for Bob and Alice, make updates, train and pred funcs
params   = {'bob' : get_all_params([bob_conv, bob_hid, 
                                    alice_conv, alice_hid])}
updates  = {'bob' : adam(loss_bob, params['bob'])}
err_fn   = {'bob' : theano.function(inputs=[msg_in, key],
                                    outputs=decrypt_err_bob)}
train_fn = {'bob' : theano.function(inputs=[msg_in, key],
                                    outputs=loss_bob,
                                    updates=updates['bob'])}
pred_fn  = {'bob' : theano.function(inputs=[msg_in, key], outputs=bob_msg)}
 
# Get all the parameters for Eve, make updates, train and pred funcs
params['eve']   = get_all_params([eve_hid1, eve_hid2, eve_conv])
updates['eve']  = adam(decrypt_err_eve, params['eve'])
err_fn['eve']   = theano.function(inputs=[msg_in, key], 
                                  outputs=decrypt_err_eve)
train_fn['eve'] = theano.function(inputs=[msg_in, key], 
                                  outputs=decrypt_err_eve,
                                  updates=updates['eve'])
pred_fn['eve']  = theano.function(inputs=[msg_in, key], outputs=eve_msg)
 
# Function for training either Bob+Alice or Eve for some time
def train(bob_or_eve, results, max_iters, print_every, es=0., es_limit=100):
    count = 0
    for i in range(max_iters):
        # Generate some data
        msg_in_val, key_val = gen_data()
        # Train on this batch and get loss
        loss = train_fn[bob_or_eve](msg_in_val, key_val)
        # Store absolute decryption error of the model on this batch
        results = np.hstack((results, 
                             err_fn[bob_or_eve](msg_in_val, key_val).sum()))
        # Print loss now and then
        if i % print_every == 0:
            print ('training loss:', loss)
        # Early stopping if we see a low-enough decryption error enough times
        if es and loss < es:
            count += 1
            if count > es_limit:
                break
    return np.hstack((results, np.repeat(results[-1], max_iters - i - 1)))
 
# Initialise some empty results arrays
results_bob, results_eve = [], []
adversarial_iterations = 60
 
# Perform adversarial training
for i in range(adversarial_iterations):
    n = 2000
    print_every = 100
    print ('training bob and alice, run:', i+1)
    results_bob = train('bob', results_bob, n, print_every, es=0.01)
    print ('training eve, run:', i+1)
    results_eve = train('eve', results_eve, n, print_every, es=0.01)
 
# Plot the results
plt.plot([np.min(results_bob[i:i+n]) for i in np.arange(0, 
          len(results_bob), n)])
plt.plot([np.min(results_eve[i:i+n]) for i in np.arange(0, 
          len(results_eve), n)])
plt.legend(['bob', 'eve'])
plt.xlabel('adversarial iteration')
plt.ylabel('lowest decryption error achieved')
plt.show()
Файл слоев

Python
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import theano
import theano.tensor as T
import numpy as np
        
def get_activation(inp, act_fn, name):
    if act_fn == 'tanh':
        return T.tanh(inp)
    elif act_fn == 'relu':
        return T.nnet.relu(inp)
    elif act_fn == 'sigmoid':
        return T.nnet.sigmoid(inp)
    else:
        print ('Note: no valid activation specified for ' + name)
        return inp
 
# Function used to get the theano tensor from the class if class was passed to
# layer instead of raw tensor
def get_source(source):
    if 'Layer' in source.__class__.__name__:
        return source.output
    return source
    
# Function to get Glorot-initialised W shared matrix
def get_weights(in_dim, out_dim, name):
    W_val = np.asarray(\
        np.random.uniform(low=-np.sqrt(6. / (in_dim + out_dim)), 
                          high=np.sqrt(6. / (in_dim + out_dim)),
                          size=(in_dim, out_dim)), dtype=theano.config.floatX)
    return theano.shared(value=W_val, name=name, borrow=True)
 
# Function to get bias shared variable
def get_bias(d, name):
    b_values = np.zeros((d,), dtype=theano.config.floatX)
    b = theano.shared(value=b_values, name=name, borrow=True)
    return b
 
# Function to extract all the params from a list of layers
def get_all_params(layers):
    out = []
    for l in layers:
        for p in l.params:
            out.append(p)
    return out
 
class ConvLayer(object):
 
    def __init__(self, source, filter_shape, image_shape, stride,
                 act_fn, border_mode='full', name='conv'):
        """
        Create a convolutional layer
        This is adapted from the deeplearning.net Theano tutorial
        
        :source: previous layer or tensor
 
        :type filter_shape: tuple or list of length 4
        :param filter_shape: (number of filters, num input feature maps,
                              filter height, filter width)
 
        :type image_shape: tuple or list of length 4
        :param image_shape: (batch size, num input feature maps,
                             image height, image width)
 
        """
 
        assert image_shape[1] == filter_shape[1]
                             
        self.image_shape = image_shape
        self.filter_shape = filter_shape
        self.stride = stride
        self.border_mode = border_mode
        self.name = name
        self.act_fn = act_fn
        
        self.parent = source
        self.source = get_source(source)
 
        # there are "num input feature maps * filter height * filter width"
        # inputs to each hidden unit
        fan_in = np.prod(filter_shape[1:])
        # each unit in the lower layer receives a gradient from:
        # "num output feature maps * filter height * filter width"
        fan_out = (filter_shape[0] * np.prod(filter_shape[2:]))
        # initialize weights with random weights
        W_bound = np.sqrt(6. / (fan_in + fan_out))
        self.W = theano.shared(
            np.asarray(
                np.random.uniform(low=-W_bound, high=W_bound, size=filter_shape),
                dtype=theano.config.floatX
            ),
            borrow=True,
            name=name + '_W'
        )
 
        # the bias is a 1D tensor -- one bias per output feature map
        b_values = np.zeros((filter_shape[0],), dtype=theano.config.floatX)
        self.b = theano.shared(value=b_values, borrow=True, name=name + '_b')
        # convolve input feature maps with filters
        conv_out = T.nnet.conv2d(
            input=self.source,
            filters=self.W,
            filter_shape=self.filter_shape,
            input_shape=self.image_shape,
            border_mode=self.border_mode,
            subsample=self.stride
        )
        
        # Calc output
        self.output_pre_activ = conv_out + self.b.dimshuffle('x', 0, 'x', 'x')
        # Activate it
        self.output = get_activation(self.output_pre_activ,
                                     act_fn=self.act_fn,
                                     name=self.name)
 
        self.params = [self.W, self.b]
 
class HiddenLayer():
    def __init__(self, source, input_size, hidden_size, name, act_fn):
        self.parent = source
        self.source = get_source(source)
        self.input_size = input_size
        self.hidden_size = hidden_size
        self.name = name
        self.act_fn = act_fn
        # Get weights and bias
        self.W = get_weights(self.input_size, self.hidden_size, 'W_' + name)
        self.b = get_bias(self.hidden_size, 'b_' + name)
        # Calc output
        self.output_pre_activ = T.dot(self.source, self.W) + \
                                self.b.dimshuffle('x', 0)
        # Activate it
        self.output = get_activation(self.output_pre_activ,
                                     act_fn=self.act_fn,
                                     name=self.name)
        self.params = [self.W, self.b]
0
Вложения
Тип файла: pdf Paper Crypto NN.pdf (351.4 Кб, 0 просмотров)
QA
Эксперт
41792 / 34177 / 6122
Регистрация: 12.04.2006
Сообщений: 57,940
10.03.2019, 11:35
Ответы с готовыми решениями:

Deconvolutional Neural Network
Здравствуйте! Уже несколько месяцев пытаюсь реализовать эту нейросеть. Уже реализована...

Neural Network Toolbox Кохонен
Доброго времени суток! Уже много где искал не могу найти ответ,вы мне не поможете? почему может не...

Как использовать Fast Artificial Neural Network Library (FANN)
как использовать Fast Artificial Neural Network Library (FANN) в С#? Нужен подробный пример...

Перевод на русский язык компонента Neural Network Clustering Tool GUI
Здравствуйте! Делаю не самую сложную программу. Использую вышеназванный компонент, вызывая его...

Шифрование System.Security.Cryptography
Добрый вечер. Стоит следующая задача: шифрование пароля, хранение в файле, и считывание с...

2
StudAssistant
Эксперт
34811 / 27003 / 5019
Регистрация: 17.04.2006
Сообщений: 49,622
10.03.2019, 11:35
Закажите контрольную, курсовую, диплом или любую другую студенческую работу здесь.
2
q1w2e3r4t5y6
0 / 0 / 0
Регистрация: 06.04.2015
Сообщений: 9
10.03.2019, 12:25  [ТС] 2
Вариантом решения предлагают изменить global настройки в файле .teanorc.txt, но у меня в домашней директории не имеется этого файла. В какой степи его искать?

Добавлено через 9 минут
Да, просто надо было создать .theanorc.txt с параметрами, Этого вполне хватило

Добавлено через 16 минут
Ну вот только с GPU было бы пошустрее, поэтому и вопрос, что нужно для перехода с CPU на GPU?
0
dondublon
2344 / 1267 / 258
Регистрация: 17.03.2012
Сообщений: 7,444
Записей в блоге: 5
20.03.2019, 12:19 3
Цитата Сообщение от q1w2e3r4t5y6 Посмотреть сообщение
что нужно для перехода с CPU на GPU?
Supporting GPU.
0
StackOverflow
Эксперт
37091 / 29110 / 5898
Регистрация: 17.06.2006
Сообщений: 43,301
20.03.2019, 12:19

Шифрование без использования System.Security.Cryptography
Всем доброго времени суток, помогите найти исходник, или другой источник информации, примера,...

Neural Networks для новичков или наставьте на путь истинный
Доброго времени суток всем гостям этой темы! Сразу перехожу к сути: увидев последние разработки в...

The system seems to lack either network cards or network drivers (Не загружается ОС)
Перезапустил Windows, и выскачила такая ошибка Пробывал зайти в безопасный режим, но не выходит,...


Искать еще темы с ответами

Или воспользуйтесь поиском по форуму:
3
Ответ Создать тему
Опции темы

КиберФорум - форум программистов, компьютерный форум, программирование
Powered by vBulletin® Version 3.8.9
Copyright ©2000 - 2019, vBulletin Solutions, Inc.
Рейтинг@Mail.ru