1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
| /*
Fast Fourier Transformation
====================================================
Coded by Miroslav Voinarovsky, 2006
This source is freeware.
*/
#include "fft1.h"
#include <math.h>
// This array contains values from 0 to 255 with reverse bit order
static unsigned char reverse256[]= {
0x00, 0x80, 0x40, 0xC0, 0x20, 0xA0, 0x60, 0xE0,
0x10, 0x90, 0x50, 0xD0, 0x30, 0xB0, 0x70, 0xF0,
0x08, 0x88, 0x48, 0xC8, 0x28, 0xA8, 0x68, 0xE8,
0x18, 0x98, 0x58, 0xD8, 0x38, 0xB8, 0x78, 0xF8,
0x04, 0x84, 0x44, 0xC4, 0x24, 0xA4, 0x64, 0xE4,
0x14, 0x94, 0x54, 0xD4, 0x34, 0xB4, 0x74, 0xF4,
0x0C, 0x8C, 0x4C, 0xCC, 0x2C, 0xAC, 0x6C, 0xEC,
0x1C, 0x9C, 0x5C, 0xDC, 0x3C, 0xBC, 0x7C, 0xFC,
0x02, 0x82, 0x42, 0xC2, 0x22, 0xA2, 0x62, 0xE2,
0x12, 0x92, 0x52, 0xD2, 0x32, 0xB2, 0x72, 0xF2,
0x0A, 0x8A, 0x4A, 0xCA, 0x2A, 0xAA, 0x6A, 0xEA,
0x1A, 0x9A, 0x5A, 0xDA, 0x3A, 0xBA, 0x7A, 0xFA,
0x06, 0x86, 0x46, 0xC6, 0x26, 0xA6, 0x66, 0xE6,
0x16, 0x96, 0x56, 0xD6, 0x36, 0xB6, 0x76, 0xF6,
0x0E, 0x8E, 0x4E, 0xCE, 0x2E, 0xAE, 0x6E, 0xEE,
0x1E, 0x9E, 0x5E, 0xDE, 0x3E, 0xBE, 0x7E, 0xFE,
0x01, 0x81, 0x41, 0xC1, 0x21, 0xA1, 0x61, 0xE1,
0x11, 0x91, 0x51, 0xD1, 0x31, 0xB1, 0x71, 0xF1,
0x09, 0x89, 0x49, 0xC9, 0x29, 0xA9, 0x69, 0xE9,
0x19, 0x99, 0x59, 0xD9, 0x39, 0xB9, 0x79, 0xF9,
0x05, 0x85, 0x45, 0xC5, 0x25, 0xA5, 0x65, 0xE5,
0x15, 0x95, 0x55, 0xD5, 0x35, 0xB5, 0x75, 0xF5,
0x0D, 0x8D, 0x4D, 0xCD, 0x2D, 0xAD, 0x6D, 0xED,
0x1D, 0x9D, 0x5D, 0xDD, 0x3D, 0xBD, 0x7D, 0xFD,
0x03, 0x83, 0x43, 0xC3, 0x23, 0xA3, 0x63, 0xE3,
0x13, 0x93, 0x53, 0xD3, 0x33, 0xB3, 0x73, 0xF3,
0x0B, 0x8B, 0x4B, 0xCB, 0x2B, 0xAB, 0x6B, 0xEB,
0x1B, 0x9B, 0x5B, 0xDB, 0x3B, 0xBB, 0x7B, 0xFB,
0x07, 0x87, 0x47, 0xC7, 0x27, 0xA7, 0x67, 0xE7,
0x17, 0x97, 0x57, 0xD7, 0x37, 0xB7, 0x77, 0xF7,
0x0F, 0x8F, 0x4F, 0xCF, 0x2F, 0xAF, 0x6F, 0xEF,
0x1F, 0x9F, 0x5F, 0xDF, 0x3F, 0xBF, 0x7F, 0xFF,
};
//This is minimized version of type 'complex'. All operations is inline
static long double temp;
inline void operator+=(ShortComplex &x, const Complex &y) { x.re += (double)y.re; x.im += (double)y.im; }
inline void operator-=(ShortComplex &x, const Complex &y) { x.re -= (double)y.re; x.im -= (double)y.im; }
inline void operator*=(Complex &x, const Complex &y) { temp = x.re; x.re = temp * y.re - x.im * y.im; x.im = temp * y.im + x.im * y.re; }
inline void operator*=(Complex &x, const ShortComplex &y) { temp = x.re; x.re = temp * y.re - x.im * y.im; x.im = temp * y.im + x.im * y.re; }
inline void operator/=(ShortComplex &x, double div) { x.re /= div; x.im /= div; }
inline void operator/=(Complex &x, double div) { x.re /= div; x.im /= div; }
inline void operator*=(ShortComplex&x, const ShortComplex &y) { double temp = x.re; x.re = temp * y.re - x.im * y.im; x.im = temp * y.im + x.im * y.re; }
//This is array exp(-2*pi*j/2^n) for n= 1,...,32
//exp(-2*pi*j/2^n) = Complex( cos(2*pi/2^n), -sin(2*pi/2^n) )
static Complex W2n[32]={
{-1.00000000000000000000000000000000, 0.00000000000000000000000000000000}, // W2 calculator (copy/paste) : po, ps
{ 0.00000000000000000000000000000000, -1.00000000000000000000000000000000}, // W4: p/2=o, p/2=s
{ 0.70710678118654752440084436210485, -0.70710678118654752440084436210485}, // W8: p/4=o, p/4=s
{ 0.92387953251128675612818318939679, -0.38268343236508977172845998403040}, // p/8=o, p/8=s
{ 0.98078528040323044912618223613424, -0.19509032201612826784828486847702}, // p/16=
{ 0.99518472667219688624483695310948, -9.80171403295606019941955638886e-2}, // p/32=
{ 0.99879545620517239271477160475910, -4.90676743274180142549549769426e-2}, // p/64=
{ 0.99969881869620422011576564966617, -2.45412285229122880317345294592e-2}, // p/128=
{ 0.99992470183914454092164649119638, -1.22715382857199260794082619510e-2}, // p/256=
{ 0.99998117528260114265699043772857, -6.13588464915447535964023459037e-3}, // p/(2y9)=
{ 0.99999529380957617151158012570012, -3.06795676296597627014536549091e-3}, // p/(2y10)=
{ 0.99999882345170190992902571017153, -1.53398018628476561230369715026e-3}, // p/(2y11)=
{ 0.99999970586288221916022821773877, -7.66990318742704526938568357948e-4}, // p/(2y12)=
{ 0.99999992646571785114473148070739, -3.83495187571395589072461681181e-4}, // p/(2y13)=
{ 0.99999998161642929380834691540291, -1.91747597310703307439909561989e-4}, // p/(2y14)=
{ 0.99999999540410731289097193313961, -9.58737990959773458705172109764e-5}, // p/(2y15)=
{ 0.99999999885102682756267330779455, -4.79368996030668845490039904946e-5}, // p/(2y16)=
{ 0.99999999971275670684941397221864, -2.39684498084182187291865771650e-5}, // p/(2y17)=
{ 0.99999999992818917670977509588385, -1.19842249050697064215215615969e-5}, // p/(2y18)=
{ 0.99999999998204729417728262414778, -5.99211245264242784287971180889e-6}, // p/(2y19)=
{ 0.99999999999551182354431058417300, -2.99605622633466075045481280835e-6}, // p/(2y20)=
{ 0.99999999999887795588607701655175, -1.49802811316901122885427884615e-6}, // p/(2y21)=
{ 0.99999999999971948897151921479472, -7.49014056584715721130498566730e-7}, // p/(2y22)=
{ 0.99999999999992987224287980123973, -3.74507028292384123903169179084e-7}, // p/(2y23)=
{ 0.99999999999998246806071995015625, -1.87253514146195344868824576593e-7}, // p/(2y24)=
{ 0.99999999999999561701517998752946, -9.36267570730980827990672866808e-8}, // p/(2y25)=
{ 0.99999999999999890425379499688176, -4.68133785365490926951155181385e-8}, // p/(2y26)=
{ 0.99999999999999972606344874922040, -2.34066892682745527595054934190e-8}, // p/(2y27)=
{ 0.99999999999999993151586218730510, -1.17033446341372771812462135032e-8}, // p/(2y28)=
{ 0.99999999999999998287896554682627, -5.85167231706863869080979010083e-9}, // p/(2y29)=
{ 0.99999999999999999571974138670657, -2.92583615853431935792823046906e-9}, // p/(2y30)=
{ 0.99999999999999999892993534667664, -1.46291807926715968052953216186e-9}, // p/(2y31)=
};
#define M_PI (3.1415926535897932384626433832795)
inline void complex_mul(ShortComplex *z, const ShortComplex *z1, const Complex *z2)
{
z->re = (double)(z1->re * z2->re - z1->im * z2->im);
z->im = (double)(z1->re * z2->im + z1->im * z2->re);
}
static ShortComplex *createWstore(unsigned int Nmax)
{
unsigned int N, Skew, Skew2;
ShortComplex *Wstore, *Warray, *WstoreEnd;
Complex WN, *pWN;
Skew2 = Nmax >> 1;
Wstore = new ShortComplex[Skew2];
WstoreEnd = Wstore + Skew2;
Wstore[0].re = 1.0;
Wstore[0].im = 0.0;
for(N = 4, pWN = W2n + 1, Skew = Skew2 >> 1; N <= Nmax; N += N, pWN++, Skew2 = Skew, Skew >>= 1)
{
//WN = W(1, N) = exp(-2*pi*j/N)
WN= *pWN;
for(Warray = Wstore; Warray < WstoreEnd; Warray += Skew2)
complex_mul(Warray + Skew, Warray, &WN);
}
return Wstore;
}
/*
static void fft_step(ShortComplex *x, unsigned int T, bool complement, const ShortComplex *Wstore)
{
unsigned int Nmax, I, J, N, Nd2, k, m, Skew, mpNd2, Step;
unsigned char *Ic = (unsigned char*) &I;
unsigned char *Jc = (unsigned char*) &J;
ShortComplex S;
const ShortComplex *Warray;
Complex Temp;
Nmax = 1 << T;
//first interchanging
for(I = 1; I < Nmax - 1; I++)
{
Jc[0] = reverse256[Ic[3]];
Jc[1] = reverse256[Ic[2]];
Jc[2] = reverse256[Ic[1]];
Jc[3] = reverse256[Ic[0]];
J >>= (32 - T);
if (I < J)
{
S = x[I];
x[I] = x[J];
x[J] = S;
}
}
//main loop
for(N = 2, Nd2 = 1, Skew = Nmax >> 1, Step= 1; N <= Nmax; Nd2 = N, N += N, Skew >>= 1, Step++)
{
for(Warray = Wstore, k = 0; k < Nd2; k++, Warray += Skew)
{
for(m = k; m < Nmax; m += N)
{
Temp = *Warray;
if (complement)
Temp.im= -Temp.im;
mpNd2= m + Nd2;
Temp *= x[mpNd2];
x[mpNd2] = x[m];
x[mpNd2] -= Temp;
x[m] += Temp;
}
}
}
}
*/
static void fft_step(ShortComplex *x, unsigned int T, bool complement, const ShortComplex *Wstore)
{
unsigned int Nmax, I, J, N, Nd2, N2, k, Skew, Step;
unsigned char *Ic= (unsigned char*) &I;
unsigned char *Jc= (unsigned char*) &J;
ShortComplex S;
Nmax= 1 << T;
double cmul= complement ? -1.0 : +1.0;
//first interchanging
for(I = 1; I < Nmax - 1; I++)
{
Jc[0]= reverse256[Ic[3]];
Jc[1]= reverse256[Ic[2]];
Jc[2]= reverse256[Ic[1]];
Jc[3]= reverse256[Ic[0]];
J >>= (32 - T);
if (I < J)
{
S= x[I];
x[I]= x[J];
x[J]= S;
}
}
double *Warray;
double Wre, Wim;
double Tre, Tim;
double *arr= (double*)x;
double *arrEnd= arr + (Nmax + Nmax);
//main loop
for(N= 2, Skew= Nmax, Step= 1; N <= Nmax; N += N, Skew >>= 1, Step++)
{
N2= N + N;
Nd2= (N >> 1);
for(Warray= (double*)Wstore, k= 0; k < Nd2; k++, Warray += Skew)
{
Wre= *Warray;
Wim= cmul*Warray[1];
for(double *x1re= arr + (k + k); x1re < arrEnd; x1re+= N2)
{
double *x1im= x1re + 1;
double *x2re= x1re + N;
double *x2im= x2re + 1;
Tre = Wre * *x2re - Wim * *x2im;
Tim = Wre * *x2im + Wim * *x2re;
*x2re= *x1re - Tre;
*x2im= *x1im - Tim;
*x1re+= Tre;
*x1im+= Tim;
}
}
}
}
/*
x: x - array of items
N: N - number of items in array
complement: false - normal (direct) transformation, true - reverse transformation
*/
void universal_fft(ShortComplex *x, int N, bool complement)
{
ShortComplex *x_;
ShortComplex *w;
ShortComplex *Wstore;
int T;
T= (int)floor(log((double)N) / log(2.0) + 0.5);
if (1 << T == N)
{
Wstore= createWstore(N);
fft_step(x, T, complement, Wstore);
if (complement)
{
for(int i= 0; i < N; i++)
x[i]/= N;
}
delete [] Wstore;
return;
}
//find N', T
int N2= N+N;
int N_;
long double arg;
for(N_= 1, T= 0; N_ < N2; N_+= N_, T++)
{
}
//find --2pi/N/2 = pi/N
long double piN= M_PI / N;
if (complement)
piN= -piN;
//find x_[n] = x[n]*e^--2*j*pi*n*n/N/2 = x[n]*e^j*piN*n*n
x_= new ShortComplex[N_];
Complex v;
int n;
for(n= 0; n < N; ++n)
{
arg= piN*n*n;
v.re= cosl(arg);
v.im= sinl(arg);
complex_mul(x_ + n, x + n, &v);
}
for(; n < N_; ++n)
x_[n].re= x_[n].im= 0;
//find w[n] = e^-j*2*pi*(2*N-2-n)^2/N/2= e^-j*piN*(2*N-2-n)^2
w= new ShortComplex[N_];
int N22= 2*N - 2;
for(n= 0; n < N_; ++n, --N22)
{
arg= -piN*N22*N22;
w[n].re= (double)cos(arg);
w[n].im= (double)sin(arg);
}
//FFT1
Wstore= createWstore(N_);
fft_step(x_, T, false, Wstore);
//FFT2
fft_step(w, T, false, Wstore);
//svertka
for(n= 0; n < N_; ++n)
x_[n]*= w[n];
//FFT3 (complement)
fft_step(x_, T, true, Wstore);
//find X[n] = X_[n]*e^--j*2*pi*n*n/N/2 = X_[n]*e^j*piN*n*n
for(n= 0, N22= 2*N - 2; n < N; ++n, --N22)
{
arg= piN*n*n;
v.re= cosl(arg);
v.im= sinl(arg);
v/= N_;
if (complement)
v/= N;
complex_mul(x + n, x_ + N22, &v);
}
delete [] x_;
delete [] w;
delete [] Wstore;
} |