1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
| import scipy.integrate
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg
from matplotlib.figure import Figure
def GetF(k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k40, k41, k42, k43, k44, k45, k46, k47, k48, k49, k50, k51, k52, k53, k54, k55, k56, k57, k58, k59, k60, k61, k62, k63, k64, k65, k66, k67):
f1 = lambda t, yList : 0.011*k1*yList[10] + 0.019*k10*yList[10] + 0.05*k13*yList[11] + 0.07*k22*yList[11] + 0.04*k23*yList[9] + 0.04*k31*yList[9] + 0.11*k32*yList[8] + 0.05*k39*yList[8] + 0.07*k40*yList[7] + 0.22*k46*yList[7] + 0.47*k47*yList[6] + 0.03*k52*yList[6] + 0.61*k53*yList[5] + 0.08*k57*yList[5] + 0.3*k58*yList[4] + 0.16*k61*yList[4] + 0.8*k62*yList[3] + 0.11*k64*yList[3] + 0.37*k65*yList[2] + 0.63*k66*yList[3] + 1*k67*yList[1]
f2 = lambda t, yList : 0.15*k2*yList[10] + 0.01*k9*yList[10] + 0.09*k14*yList[11] + 0.07*k21*yList[11] + 0.07*k24*yList[9] + 0.08*k30*yList[9] + 0.09*k33*yList[8] + 0.12*k38*yList[8] + 0.11*k41*yList[7] + 0.06*k45*yList[7] + 0.23*k48*yList[6] + 0.05*k51*yList[6] + 0.18*k54*yList[5] + 0.12*k56*yList[5] + 0.35*k59*yList[4] + 0.19*k60*yList[4] + 0.09*k63*yList[3] + 0.09*k63*yList[3] + 0.63*k66*yList[2] + 0.37*k65*yList[3] - 1*k67*yList[1]
f3 = lambda t, yList : 0.1*k3*yList[10] + 0.03*k8*yList[10] + 0.12*k15*yList[11] + 0.09*k20*yList[11] + 0.17*k25*yList[9] + 0.08*k29*yList[9] + 0.33*k34*yList[8] + 0.05*k37*yList[8] + 0.27*k42*yList[7] + 0.18*k44*yList[7] + 0.14*k49*yList[6] + 0.08*k50*yList[6] + 0.01*k55*yList[5] + 0.01*k55*yList[5] + 0.19*k60*yList[4] + 0.35*k59*yList[4] + 0.11*k64*yList[3] + 0.8*k62*yList[3] - 0.37*k65*yList[3] - 0.63*k66*yList[3]
f4 = lambda t, yList : 0.07*k4*yList[10] + 0.04*k7*yList[10] + 0.07*k16*yList[11] + 0.11*k19*yList[11] + 0.22*k26*yList[9] + 0.12*k28*yList[9] + 0.17*k35*yList[8] + 0.08*k36*yList[8] + 0.09*k43*yList[7] + 0.09*k43*yList[7] + 0.08*k50*yList[6] + 0.14*k49*yList[6] + 0.12*k56*yList[5] + 0.18*k54*yList[5] + 0.16*k61*yList[4] + 0.3*k58*yList[4] - 0.11*k64*yList[3] - 0.09*k63*yList[3] - 0.8*k62*yList[3]
f5 = lambda t, yList : 0.31*k5*yList[10] + 0.06*k6*yList[10] + 0.2*k17*yList[11] + 0.13*k18*yList[11] + 0.18*k27*yList[9] + 0.18*k27*yList[9] + 0.08*k36*yList[8] + 0.17*k35*yList[8] + 0.18*k44*yList[7] + 0.27*k42*yList[7] + 0.05*k51*yList[6] + 0.23*k48*yList[6] + 0.08*k57*yList[5] + 0.61*k53*yList[5] - 0.3*k58*yList[4] - 0.35*k59*yList[4] - 0.19*k60*yList[4] - 0.16*k61*yList[4]
f6 = lambda t, yList : 0.06*k6*yList[10] + 0.31*k5*yList[10] + 0.13*k18*yList[11] + 0.2*k17*yList[11] + 0.12*k28*yList[9] + 0.22*k26*yList[9] + 0.05*k37*yList[8] + 0.33*k34*yList[8] + 0.06*k45*yList[7] + 0.11*k41*yList[7] + 0.03*k52*yList[6] + 0.47*k47*yList[6] - 0.61*k53*yList[5] - 0.18*k54*yList[5] - 0.01*k55*yList[5] - 0.12*k56*yList[5] - 0.08*k57*yList[5]
f7 = lambda t, yList : 0.04*k7*yList[10] + 0.07*k4*yList[10] + 0.11*k19*yList[11] + 0.07*k16*yList[11] + 0.08*k29*yList[9] + 0.17*k25*yList[9] + 0.12*k38*yList[8] + 0.09*k33*yList[8] + 0.22*k46*yList[7] + 0.07*k40*yList[7] - 0.47*k47*yList[6] - 0.23*k48*yList[6] - 0.14*k49*yList[6] - 0.08*k50*yList[6] - 0.05*k51*yList[6] - 0.03*k52*yList[6]
f8 = lambda t, yList : 0.03*k8*yList[10] + 0.1*k3*yList[10] + 0.09*k20*yList[11] + 0.12*k15*yList[11] + 0.08*k30*yList[9] + 0.07*k24*yList[9] + 0.05*k39*yList[8] + 0.11*k32*yList[8] - 0.07*k40*yList[7] - 0.11*k41*yList[7] - 0.27*k42*yList[7] - 0.09*k43*yList[7] - 0.18*k44*yList[7] - 0.06*k45*yList[7] - 0.22*k46*yList[7]
f9 = lambda t, yList : 0.02*k9*yList[10] + 0.15*k2*yList[10] + 0.07*k21*yList[11] + 0.09*k14*yList[11] + 0.04*k31*yList[9] + 0.04*k23*yList[9] - 0.11*k32*yList[8] - 0.09*k33*yList[8] - 0.33*k34*yList[8] - 0.17*k35*yList[8] - 0.08*k36*yList[8] - 0.05*k37*yList[8] - 0.12*k38*yList[8] - 0.05*k39*yList[8]
f10 = lambda t, yList : 0.01*k9*yList[10] + 0.15*k2*yList[10] + 0.07*k21*yList[11] + 0.09*k14*yList[11] - 0.04*k23*yList[9] - 0.07*k24*yList[9] - 0.17*k25*yList[9] - 0.22*k26*yList[9] - 0.18*k27*yList[9] - 0.12*k28*yList[9] - 0.08*k29*yList[9] - 0.08*k30*yList[9] - 0.04*k31*yList[9]
f11 = lambda t, yList : 0.12*k12*yList[10] - 0.011*k1*yList[10] - 0.15*k2*yList[10] - 0.1*k3*yList[10] - 0.07*k4*yList[10] - 0.31*k5*yList[10] - 0.06*k6*yList[10] - 0.04*k7*yList[10] - 0.03*k8*yList[10] - 0.02*k9*yList[10] - 0.019*k10*yList[10]
f12 = lambda t, yList : 0.18*k11*yList[11] - 0.05*k13*yList[11] - 0.09*k14*yList[11] - 0.12*k15*yList[11] - 0.07*k16*yList[11] - 0.2*k17*yList[11] - 0.13*k18*yList[11] - 0.11*k19*yList[11] - 0.09*k20*yList[11] - 0.07*k21*yList[11] - 0.07*k22*yList[11]
return lambda t, yList : np.asarray([f1(t, yList), f2(t, yList), f3(t, yList), f4(t, yList), f5(t, yList), f6(t, yList), f7(t, yList), f8(t, yList), f9(t, yList), f10(t, yList), f11(t, yList), f12(t, yList)])
def calc_k():
t0 = float(t0_entry.get())
tLast = float(tLast_entry.get())
h = float(h_entry.get())
y10 = float(y10_entry.get())
y0=y1=y2=y3=y4=y5=y6=y7=y8=y9=y11=0
k1 = 1.6; k2 = 0.5; k3 = 2.3; k4 = 1.7; k5 = 3.8; k6 = 5.9; k7 = 1.1; k8 = 2.2; k9 = 0.4; k10 = 3.1; k11 = 6.8; k12 = 12.8
k13 = 2.3; k14 = 1.4; k15 = 1.5; k16 = 0.6; k17 = 6.8; k18 = 2.9; k19 = 1.2; k20 = 0.3; k21 = 3.7; k22 = 2.1; k23 = 0.4; k24 = 1.5
k25 = 1.3; k26 = 0.2; k27 = 0.1; k28 = 5.8; k29 = 8.7; k30 = 2.9; k31 = 1.4; k32 = 3.6; k33 = 1.4; k34 = 1.5; k35 = 5.9; k36 = 9.8
k37 = 3.6; k38 = 1.3; k39 = 0.1; k40 = 0.4; k41 = 2.2; k42 = 4.3; k43 = 6.8; k44 = 1.3; k45 = 1.5; k46 = 0.2; k47 = 3.8; k48 = 4.4
k49 = 0.3; k50 = 1.8; k51 = 2.2; k52 = 2.1; k53 = 0.19; k54 = 3.4; k55 = 9.6; k56 = 1.2; k57 = 0.7; k58 = 1.8; k59 = 0.6
k60 = 1.4; k61 = 2.1; k62 = 0.2; k63 = 0.8; k64 = 0.3; k65 = 0.3; k66 = 0.2; k67 = 0.3
# Функция правых частей в векторной форме
f = GetF(k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11, k12, k13, k14, k15, k16, k17, k18, k19, k20, k21, k22, k23, k24, k25, k26, k27, k28, k29, k30, k31, k32, k33, k34, k35, k36, k37, k38, k39, k40, k41, k42, k43, k44, k45, k46, k47, k48, k49, k50, k51, k52, k53, k54, k55, k56, k57, k58, k59, k60, k61, k62, k63, k64, k65, k66, k67)
rk = scipy.integrate.RK45(
fun = f,
t0 = t0,
y0 = [y0, y1, y2, y3, y4, y5, y6, y7, y8, y9, y10, y11],
t_bound = tLast)
rkPoints = []
time = []
# Метод Рунге-Кутта
for i in range(4):
try:
rkPoints.append(np.asarray(rk.y))
time.append(rk.t)
rk.step()
except Exception as ex:
break
# Метод Адамса-Башфорта
dt = h
for i in range( int((tLast-t0)/h) ):
newPoint = rkPoints[-1] + h/24 * (55*f(time[-1], rkPoints[-1]) -
59*f(time[-2], rkPoints[-2]) +
37*f(time[-3], rkPoints[-3]) -
9*f(time[-4], rkPoints[-4]) )
rkPoints.append(newPoint)
time.append(time[-1] + dt)
# Построение графика
fig = plt.figure(figsize=(16, 9), dpi=200)
a = fig.add_subplot(111)
a.set_xlabel('Время, с')
a.set_ylabel('Концентрация, Моль')
plt.plot(time, rkPoints)
a.legend(("Метан", "Этан","Пропан","Бутан","Пентан", "Гексан","Гептан","Октан","Нонан", "Декан","Ундекан","Изо-Ундекан"))
# Сохранение результатов отдельно в корне программы
plt.savefig("Graph.png")
f = open('Rezultat.txt', 'w')
print (rkPoints[i], file=f)
f.close()
canvas = FigureCanvasTkAgg(fig)
canvas.get_tk_widget().pack()
canvas.draw()
# создание экземпляра класса Tk, отвечающего за создание окон
root = tkinter.Tk ()
# определение заголовка окна
root. title ("Решения системы дифференциальных уравнений методами Рунге-Кутта и Адамса Башфорта")
frame = tkinter.Frame(root)
frame. pack ()
#########################################################################################################################
# создание окна ввода начальной концентрация для y11
y10_entry = tkinter.Entry (frame, width=10)
y10_entry.insert(0, "0.3")
y10_entry. grid (row=1, column=9,pady=5)
y10_label = tkinter.Label (frame, text="Начальная концентрация Ундекана: ")
y10_label. grid (row=1, column=8,pady=5)
######################################################################################################################
# создание окна ввода конечного момента времени
tLast_entry = tkinter.Entry (frame, width=10)
tLast_entry.insert(0, "1")
tLast_entry. grid (row=2, column=9,pady=5)
tLast_label = tkinter.Label (frame, text="Конечный момент времени (правая граница): ")
tLast_label. grid (row=2, column=8,pady=5)
# создание окна ввода значения парамметра t при котором получены y1, y2, y3, y4:
t0_entry = tkinter.Entry (frame, width=10)
t0_entry.insert(0, "0")
t0_entry. grid (row=3, column=9,pady=5)
t0_lebel = tkinter.Label (frame, text="Значение парамметра t ")
t0_lebel. grid (row=3, column=8,pady=5)
# создание окна ввода величины точности интегрирования)
h_entry = tkinter.Entry (frame, width=10)
h_entry.insert(0, "0.001")
h_entry. grid (row=4, column=9,pady=5)
h_label = tkinter.Label (frame, text="Размер разбиения: ")
h_label. grid (row=4, column=8,pady=5)
##########################################################################################################################
# создание кнопки решения
eval_button = tkinter.Button (frame,bg='coral', text="Решить", width=10,command=calc_k)
eval_button. grid (row=38, column=8,padx=5,pady=5)
# создание кнопки закрытия приложения
exit_button = tkinter.Button (frame, bg='coral', text="Выход", width=10,command=root. destroy)
exit_button. grid (row=38, column=9,padx=5,pady=5)
# создание окна
root. mainloop () |