1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
| #! python3
"""
Ваша цель в данной задаче — реализовать структуру данных Rope.
Данная структура данных хранит строку и позволяет эффективно вы-
резать кусок строки и переставить его в другое место.
Формат входа. Первая строка содержит исходную строку S, вто-
рая — число запросов q. Каждая из последующих q строк задаёт
запростройкойчиселi,j,k иозначаетследующее:вырезатьпод-
строку S[i..j] (где i и j индексируются с нуля) и вставить её после
k-го символа оставшейся строки (где k индексируется с едини-
цы), при этом если k = 0, то вставить вырезанный кусок надо в
начало.
Формат выхода. Выведитеполученную(послевсехqзапросов)стро-
ку.
Ограничения. S содержит только буквы латинского алфавита.
1 ≤ |S| ≤ 300000;
1 ≤ q ≤ 100000;
0 ≤ i ≤ j ≤ n−1;
0 ≤ k ≤ n−(j−i+1).
"""
import logging as log
from logging import debug, info
import sys
if '-vv' in sys.argv:
log.basicConfig(level=log.DEBUG, format='%(message)s')
elif '-v' in sys.argv:
log.basicConfig(level=log.INFO, format='%(message)s')
else:
log.basicConfig(level=log.WARN, format='%(message)s')
def inorder(v=None):
if v == None:
return []
s = []
if v.l != None:
s += inorder(v.l)
s += [v.key]
if v.r != None:
s += inorder(v.r)
return s
def get_tree_string(v=None, level=0):
if v == None:
return "[empty]"
s = ""
if v.l != None:
s += get_tree_string(v.l, level + 1)
s += " " * level + "{:,}({:,})\n".format(v.key, v.sum)
if v.r != None:
s += get_tree_string(v.r, level + 1)
return s
class Node:
def __init__(self, c):
self.p = None
self.l = None
self.r = None
self.c = c
self.size = 1
def isLeaf(self):
return self.l == None and self.r == None
def refresh_size(self):
self.size = 1 + (self.l.size if self.l else 0) + (self.r.size if self.r else 0)
class BstRope:
def __init__(self, s):
self.lastsum = 0
self.root = None
self._split_common_child = None
for i in range(len(s)):
self._add(s[i], i + 1)
self._splay(len(s) // 2)
def _assert_invariants(self, t):
tsize = t.size if t else 0
elements_num = len(inorder(t))
assert tsize == elements_num #, " tree invariant: root size = {:,} - {:,} (elements) = {:,}\n{}\n{}". \
#format(tsum, elements_sum, tsum - elements_sum, get_tree_string(t), _dump)
# interface:
def reorder(self, i, j, k):
"""
Вырезать с i по j (c 0), вставить после k-го символа в строке, с вырезанным фрагментом
1 1 2, hlelowrold -> hellowrold
Ex.:
abcdefghijklm, 4,5,1 -> aefbcdghijklm
1 abcd efghijklm split t 3 -> t1, t2
2 abcd ef ghijklm split t2 2 -> t3, t4
3 abcdghijklm ef merge t1 t4 -> t5
4 a bcdghijklm ef split t5 1 -> t6, t7
5 aef bcdghijklm merge t6, t3-> t8
6 aefbcdghijklm merge t8, t7 -> t
"""
l = len(self.s)
t = self._tree
assert 0 <= i
assert i <= j
assert j < l
assert 1 <= k
assert k <= l
if i == k: # already at its place
return
t1, t2 = self._split(t, i - 1)
t3, t4 = self._split(t2, j - i + 1)
t5 = self._merge(t1, t4)
t6, t7 = self._split(t5, k)
t8 = self._merge(t6, t3)
t = self._merge(t8, t7)
self._tree = t
return self._get_string(t)
# end interface
def _add(self, c, k):
"""
Goes to the empty place to insert new node or updates root
"""
#assert k >= 0
z = Node(c)
if self.root == None:
self.root = z
else:
v = self.root
while True:
if v.c == c:
raise 'add of a c should be only once'
elif v.size < k:
if v.r == None:
v.r = z
z.p = v
z.refresh_sum()
break
v = v.r
else:
#assert v.key > k
if v.l == None:
v.l = z
z.p = v
z.refresh_sum()
break
v = v.l
def _split(self, v, k):
"""
Splits v into left <= k < right. Keeps sums only till v.
5
3 7
1 4 6 9
k=3: returns (1, 5..)
"""
if v == None:
return (None, None)
if k < v.key :
le, gt = self._split(v.l, k)
if not le and not gt: # common ancestor for border:
self._split_common_child = v
v = self._merge_with_root(v, gt, v.r)
if le:
le.refresh_sum(updateParents=False)
#debug(" _split({:,}, {:,}) -> {{{}}} and {{{}}}".format(v.key, k, inorder(le), inorder(v)))
#self._assert_invariants(le)
#self._assert_invariants(v)
return (le, v)
if v.key <= k:
le, gt = self._split(v.r, k)
v = self._merge_with_root(v, v.l, le)
if gt:
gt.refresh_sum(updateParents=False)
#debug(" _split({:,}, {:,}) -> {} and {}".format(v.key, k, inorder(v), inorder(gt)))
#self._assert_invariants(v)
#self._assert_invariants(gt)
return (v, gt)
def _merge_with_root(self, v, t1, t2): # less than, greater than
"""
Merges two trees
"""
#assert v != None
#assert t1 == None or t1.key < v.key
#assert t2 == None or v.key < t2.key
# left:
if v.l:
v.l.p = None
v.l = t1
if t1:
if t1.p:
if t1.p.l == t1:
t1.p.l = None
else:
t1.p.r = None
t1.p = v
# right:
if v.r:
v.r.p = None
v.r = t2
if t2:
if t2.p:
if t2.p.l == t2:
t2.p.l = None
else:
t2.p.r = None
t2.p = v
if v.r:
v.r.refresh_sum(updateParents=False)
if v.l:
v.l.refresh_sum(updateParents=False)
v.refresh_sum(updateParents=False)
return v
def _merge(self, t1, t2):
"""
Сливает два дерева, поддерживая сумму для вершин.
"""
t = None
if not t1 or not t2 :
t = t1 or t2
else:
#assert t1.key < t2.key
t1_max = self._get_max(t1)
#assert t1_max != None
#assert t1_max.r == None
# max is the root of t1:
if t1_max == t1:
t = t1
t.r = t2
if t2.p:
if t2.p.l == t2:
t2.p.l = None
else:
t2.p.r = None
t2.p = t
# max not the root of t1:
else:
#debug(' merge \n{}\n with \n {} \n t1_max={}' \
#.format(get_tree_string(t1), get_tree_string(t2), t1_max.key))
parent = t1_max.p
self._translant_parent(t1_max, t1_max.l)
if parent and parent != t1:
parent.refresh_sum()
t1_max.p = None
t = self._merge_with_root(t1_max, t1, t2)
if t:
t.refresh_sum()
return t
def _sum(self, l, r):
global _dump
"""
Посчитать сумму элементов попадающих в отрезок [l, r]
t -> t1 < l <= t2
t2 -> t3 <= r < t4
t3 sum -> result
t2 <- merge t3, t4
t <- merge t1, t2
"""
if not self.root:
return 0
root_sum_at_start = self.root.sum if self.root else 0
t1, t2 = self._split(self.root, l - 1) # lt_l < l <= ge_l
left_border_common_child = self._split_common_child
#self._assert_invariants(t1)
#self._assert_invariants(t2)
t3, t4 = self._split(t2, r)
#self._assert_invariants(t3)
#self._assert_invariants(t4)
#t3key = None
#if t3:
# t3key = t3.key
res = t3.sum if t3 != None else 0
# merge back to keep consistent:
t2 = self._merge(t3, t4)
#self._assert_invariants(t2)
self.root = self._merge(t1, t2)
#self._assert_invariants(self.root)
#assert root_sum_at_start == (self.root.sum if self.root else 0)
if left_border_common_child:
self._splay(left_border_common_child) # try to get common up
return res
def _get_max(self, v):
while v and v.r:
v = v.r
return v
def _translant_parent(self, u, v):
"""
Transplants v at u's place
"""
#assert u
if v and v.p: # nullify v.p:
if v.p.r == v:
v.p.r = None
elif v.p.l == v:
v.p.l = None
v.p = None
if not u.p:
if u == self.root:
self.root = v
else:
if u.p.l == u:
u.p.l = v
elif u.p.r == u: # don't assert this as we can call it in rotate_left/right and there left/right children are changed
u.p.r = v
if v:
v.p = u.p
u.p = None
def _left_rotate(self, u):
"""
u
A v
B C
A < u < B < v < C
->
v
u C
A B
"""
#assert u
#assert u.r.p == u
v = u.r
u.r = v.l
if u.r:
u.r.p = u
self._translant_parent(u, v)
u.p = v
v.l = u
v.l.p = v
v.l.refresh_sum(updateParents=False)
v.refresh_sum(updateParents=False)
def _right_rotate(self, u):
"""
u
v C
A B
A < v < B < u < C
to:
v
A u
B C
"""
#assert u
#assert u.l.p == u
v = u.l
u.l = v.r
if u.l:
u.l.p = u
self._translant_parent(u, v)
u.p = v
v.r = u
v.r.p = v
v.r.refresh_sum(updateParents=False)
v.refresh_sum(updateParents=False)
def _splay(self, k):
# TODO: by k-order
raise NotImplementedError()
global _dump
if not u or not u.p:
return
# debug(' before splay at u={}:\n{}'.format(u.key, get_tree_string(u.p.p or u.p)))
while u.p != None:
if not u.p.p:
if u == u.p.l:
self._right_rotate(u.p)
elif u == u.p.r:
self._left_rotate(u.p)
else:
assert False, "INVALID TREE"
else:
# zig-zig:
if u == u.p.l and u.p == u.p.p.l:
self._right_rotate(u.p.p)
self._right_rotate(u.p)
elif u == u.p.r and u.p == u.p.p.r:
self._left_rotate(u.p.p)
self._left_rotate(u.p)
# zig-zag:
elif u == u.p.l and u.p == u.p.p.r:
self._right_rotate(u.p)
self._left_rotate(u.p)
elif u == u.p.r and u.p == u.p.p.l:
self._left_rotate(u.p)
self._right_rotate(u.p)
else:
# should not get here:
assert False, ' INVALID TREE. u={}. Tree:\n{}\n{}'.format(u.key, get_tree_string(u.p.p or u.p), _dump)
#debug(' after splay:\n' + get_tree_string(u))
def _delete(self, v):
if v == None:
return
self._splay(v)
#assert self.root == v
newroot = self._merge(v.l, v.r)
if newroot: # can be null if v was root
newroot.p = None
self.root = newroot
return
def _find(self, v, k):
r = None
if v != None:
if v.key == k:
r = v
elif v.key < k:
r = self._find(v.r, k)
elif k < v.key:
r = self._find(v.l, k)
if r:
self._splay(r)
return r
def __str__(self):
return ''.join(v.c for v in inorder(self.root))
s = input().strip()
q = int(input().strip())
rope = BstRope(s)
for query in range(q):
i, j, k = [int(p) for p in input().strip().split(' ')]
rope.reorder(i, j, k)
info(' after query, i={} j={} k={}: {}'.format(i, j, k, str(rope)))
print(rope) |