|
0 / 0 / 1
Регистрация: 29.03.2022
Сообщений: 18
|
||||||||||||||||
Расширенный бинарный алгоритм Евклида11.09.2022, 22:29. Показов 7222. Ответов 2
Необходимо разработать расширенный бинарный алгоритм Евклида, то есть такой, который кроме НОД еще считает коэффициенты х и у, такие, что НОД = a*x + b*y. Например, для a = 60, b = 12, имеем: 12 = 0*60 + 1*12. Вот итеративный расширенный алгоритм Евклида:
0
|
||||||||||||||||
| 11.09.2022, 22:29 | |
|
Ответы с готовыми решениями:
2
Алгоритм Евклида Алгоритм Евклида
|
|
964 / 485 / 241
Регистрация: 02.06.2016
Сообщений: 760
|
||||||||||||
| 12.09.2022, 04:23 | ||||||||||||
Сообщение было отмечено cypher111 как решение
Решениебла-бла-бла
1. Переход GCD(2A,2B) = 2 GCD(A,B). Нужно подобрать x,y которые бы удовлетворяли уравнению:
x·(2A)+y·(2B)=g, при условии что мы знаем x' и y' удовлетворящие соотношению: x'A + y'B=g', умножаем его на 2 и сразу получаем похожее на то что ищем: x'·(2A)+y'·(2B)=2g'=g, т.е. пара x',y' является одним из искомых частных решений и при данном переходе коэффициенты можно не менять. Пример, ищем GCD(6,8). 6 и 8 оба чётные, значит запускаем GCD(3,4). Он возвращает x=-1,y=1,g=1 (как вариант). Это значит, что для 3,4 выполняется : (-1)·3+(1)·4=1=GCD(3,4), а нам нужно такоеже для 6 и 8. Так вот эти x и y подойдут для 6 и 8: (-1)·6+(1)·8=2=GCD(6,8) 2. Переход GCD(2A,B) = GCD(A,B) где B - нечётное. Опять же, нужно найти x,y которые: x·(2A)+y·B=g, а мы знаем x' и y' которые: x'·A + y'·B=g 2.1 если x' делится нацело на два, то можно сделать так: (x'/2)·(2A) + y'·B=g, видим, что x=x'/2 и y=y' удовлетворяют нашему уранению для x и y 2.2 если x' нечётный, то к последнему уравнению добавим и вычтем A·B: x'·A - A·B + y'·B + A·B = g, группируем: (x'-B)·A + (y'+A)·B = g, но т.к. x' и B нечётные, то (x'-B) чётное, делаем так: (x'-B)/2·(2A) + (y'+A)·B = g. Отсюда x=(x'-B)/2, y=y'+A - искомые x,y 3. Еще есть такой переход GCD(A,B) = GCD(A-B,B), тоже не сложно вывести. Но, чтобы из рекусивного алгоритма сделать итеративный с константной памятью, нужно еще для этой последовательности (xi,yi) обратные формулы выписать. Ну и фишка алгоритма в том, что он использует не медленные умножение и деление, а быстрые битовые операции (>>1 вместо //2), на питоне они, возможно, с одинаковой скоростью выполняются - я не знаю.. рекурсивный алгоритм (ест память)
итеративный алгоритм с некоторыми оптимизациями
2
|
||||||||||||
|
0 / 0 / 1
Регистрация: 29.03.2022
Сообщений: 18
|
|
| 12.09.2022, 09:28 [ТС] | |
|
Вот оно, оказывается, как глубоко уходит в теории. Большое спасибо, буду разбираться
0
|
|
| 12.09.2022, 09:28 | |
|
Помогаю со студенческими работами здесь
3
Цикл с предусловием. Алгоритм Евклида
Найти наименьшее общее кратное этих чисел, используя функцию реализующая алгоритм Евклида
Искать еще темы с ответами Или воспользуйтесь поиском по форуму: |
|
Новые блоги и статьи
|
||||
|
PhpStorm 2025.3: WSL Terminal всегда стартует в ~
and_y87 14.12.2025
PhpStorm 2025. 3: WSL Terminal всегда стартует в ~ (home), игнорируя директорию проекта
Симптом:
После обновления до PhpStorm 2025. 3 встроенный терминал WSL открывается в домашней директории. . .
|
Как объединить две одинаковые БД Access с разными данными
VikBal 11.12.2025
Помогите пожалуйста !! Как объединить 2 одинаковые БД Access с разными данными.
|
Новый ноутбук
volvo 07.12.2025
Всем привет.
По скидке в "черную пятницу" взял себе новый ноутбук Lenovo ThinkBook 16 G7 на Амазоне:
Ryzen 5 7533HS
64 Gb DDR5
1Tb NVMe
16" Full HD Display
Win11 Pro
|
Музыка, написанная Искусственным Интеллектом
volvo 04.12.2025
Всем привет. Некоторое время назад меня заинтересовало, что уже умеет ИИ в плане написания музыки для песен, и, собственно, исполнения этих самых песен. Стихов у нас много, уже вышли 4 книги, еще 3. . .
|
От async/await к виртуальным потокам в Python
IndentationError 23.11.2025
Армин Ронахер поставил под сомнение async/ await. Создатель Flask заявляет: цветные функции - провал, виртуальные потоки - решение. Не threading-динозавры, а новое поколение лёгких потоков. Откат?. . .
|
|
Поиск "дружественных имён" СОМ портов
Argus19 22.11.2025
Поиск "дружественных имён" СОМ портов
На странице:
https:/ / norseev. ru/ 2018/ 01/ 04/ comportlist_windows/
нашёл схожую тему. Там приведён код на С++, который показывает только имена СОМ портов, типа,. . .
|
Сколько Государство потратило денег на меня, обеспечивая инсулином.
Programma_Boinc 20.11.2025
Сколько Государство потратило денег на меня, обеспечивая инсулином.
Вот решила сделать интересный приблизительный подсчет, сколько государство потратило на меня денег на покупку инсулинов.
. . .
|
Ломающие изменения в C#.NStar Alpha
Etyuhibosecyu 20.11.2025
Уже можно не только тестировать, но и пользоваться C#. NStar - писать оконные приложения, содержащие надписи, кнопки, текстовые поля и даже изображения, например, моя игра "Три в ряд" написана на этом. . .
|
Мысли в слух
kumehtar 18.11.2025
Кстати, совсем недавно имел разговор на тему медитаций с людьми. И обнаружил, что они вообще не понимают что такое медитация и зачем она нужна. Самые базовые вещи. Для них это - когда просто люди. . .
|
Создание Single Page Application на фреймах
krapotkin 16.11.2025
Статья исключительно для начинающих. Подходы оригинальностью не блещут.
В век Веб все очень привыкли к дизайну Single-Page-Application .
Быстренько разберем подход "на фреймах".
Мы делаем одну. . .
|