1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
| Public Type Complex
R As Double
i As Double
End Type
Public Const PI = 3.14159265358979
Public Const E = 2.71828182845905
Private Const PI2 = PI / 2
'+=====================================================================================================================================+
'| Вещественные числа |
'+=====================================================================================================================================+
Public Function LogX(Value As Double, ByVal Base As Double) As Double ' Логарифм вещественного числа по основанию Х
LogX = Log(Value) / Log(Base)
End Function
Public Function Log10(Value As Double) As Double ' Десятичный логарифм вещественного числа
Log10 = Log(Value) / 2.30258509299405
End Function
Public Function Log2(Value As Double) As Double ' Двоичный логарифм вещественного числа
Log2 = Log(Value) / 0.693147180559945
End Function
Public Function Ceil(Value As Double) As Double ' Округление в большую сторону
Ceil = -Int(-Value)
End Function
Public Function Floor(Value As Double) As Double ' Округление в меньшую сторону (Int)
Floor = Int(Value)
End Function
Public Function Sec(Value As Double) As Double ' Секанс вещественного числа
Sec = 1 / Cos(Value)
End Function
Public Function Csc(Value As Double) As Double ' Косеканс вещественного числа
Csc = 1 / Sin(Value)
End Function
Public Function Ctg(Value As Double) As Double ' Котангенс вещественного числа
Ctg = 1 / Tan(Value)
End Function
Public Function Asin(Value As Double) As Double ' Арксинус вещественного числа
If Value = -1 Then Asin = -PI2: Exit Function
If Value = 1 Then Asin = PI2: Exit Function
Asin = Atn(Value / Sqr(-Value * Value + 1))
End Function
Public Function Acos(Value As Double) As Double ' Арккоснус вещественного числа
If Value = -1 Then Acos = PI: Exit Function
If Value = 1 Then Acos = 0: Exit Function
Acos = Atn(-Value / Sqr(-Value * Value + 1)) + 1.5707963267949
End Function
Public Function Asec(Value As Double) As Double ' Арксеканс вещественного числа
Asec = 1.5707963267949 - Atn(Sgn(Value) / Sqr(Value * Value - 1))
End Function
Public Function Acsc(Value As Double) As Double ' Арккосеканс вещественного числа
Acsc = Atn(Sgn(Value) / Sqr(Value * Value - 1))
End Function
Public Function Atan2(ByVal Y As Double, ByVal x As Double) As Double 'Возвращает угол, тангенс которого равен отношению двух указанных чисел
If Y > 0 Then
If x >= Y Then
Atan2 = Atn(Y / x)
ElseIf x <= -Y Then
Atan2 = Atn(Y / x) + PI
Else
Atan2 = PI / 2 - Atn(x / Y)
End If
Else
If x >= -Y Then
Atan2 = Atn(Y / x)
ElseIf x <= Y Then
Atan2 = Atn(Y / x) - PI
Else
Atan2 = -Atn(x / Y) - PI / 2
End If
End If
End Function
Public Function Actg(Value As Double) As Double ' Арккотангенс вещественного числа
Actg = 1.5707963267949 - Atn(Value)
End Function
Public Function Sinh(Value As Double) As Double ' Гиперболический синус вещественного числа
Sinh = (Exp(Value) - Exp(-Value)) / 2
End Function
Public Function Cosh(Value As Double) As Double ' Гиперболический косинус вещественного числа
Cosh = (Exp(Value) + Exp(-Value)) / 2
End Function
Public Function Tanh(Value As Double) As Double ' Гиперболический тангенс вещественного числа
Tanh = (Exp(2 * Value) - 1) / (Exp(2 * Value) + 1)
End Function
Public Function Ctgh(Value As Double) As Double ' Гиперболический котангенс вещественного числа
Ctgh = 1 / (Exp(2 * Value) + 1) / (Exp(2 * Value) - 1)
End Function
Public Function Sech(Value As Double) As Double ' Гиперболический секанс вещественного числа
Sech = 2 / (Exp(Value) + Exp(-Value))
End Function
Public Function Csch(Value As Double) As Double ' Гиперболический косеканс вещественного числа
Csch = 2 / (Exp(Value) - Exp(-Value))
End Function
Public Function Asinh(Value As Double) As Double ' Гиперболический ареасинус вещественного числа
Asinh = Log(Value + Sqr(Value * Value + 1))
End Function
Public Function Acosh(Value As Double) As Double ' Гиперболический ареакосинус вещественного числа
Acosh = Log(Value + Sqr(Value * Value - 1))
End Function
Public Function Atanh(Value As Double) As Double ' Гиперболический ареатангенс вещественного числа
Atanh = Log((1 + Value) / (1 - Value)) / 2
End Function
Public Function Actan(Value As Double) As Double ' Гиперболический ареакотангенс вещественного числа
Actan = Log((Value + 1) / (Value - 1)) / 2
End Function
Public Function Asech(Value As Double) As Double ' Гиперболический ареасеканс вещественного числа
Asech = Log((Sqr(-Value * Value + 1) + 1) / Value)
End Function
Public Function Acsch(Value As Double) As Double ' Гиперболический ареакосеканс вещественного числа
Acsch = Log((Sgn(Value) * Sqr(Value * Value + 1) + 1) / Value)
End Function
Public Function Max(ByVal Op1 As Double, ByVal Op2 As Double) As Double ' Возвращает максимальное из двух чисел
Max = IIf(Op1 > Op2, Op1, Op2)
End Function
Public Function Min(ByVal Op1 As Double, ByVal Op2 As Double) As Double ' Возвращает минимальное из двух чисел
Min = IIf(Op1 < Op2, Op1, Op2)
End Function
Public Function IEEERemainder(ByVal Op1 As Double, ByVal Op2 As Double) As Double ' Возвращает остаток от деления одного указанного числа на другое указанное число.
IEEERemainder = Op1 - (Op2 * Round(Op1 / Op2))
End Function
Public Function rMod(ByVal Op1 As Double, ByVal Op2 As Double) As Double ' Возвращает остаток от деления одного указанного числа на другое указанное число.
rMod = (Abs(Op1) - (Abs(Op2) * (Int(Abs(Op1) / Abs(Op2))))) * Sgn(Op1)
End Function
'+=====================================================================================================================================+
'| Комплексные числа |
'+=====================================================================================================================================+
Public Function cxOne() As Complex ' R=1,I=0
cxOne.R = 1
End Function
Public Function cxImgOne() As Complex ' R=0,I=1
cxOne.i = 1
End Function
Public Function cxZero() As Complex ' R=0,I=0
End Function
Public Function cxNew(ByVal Real As Double, ByVal Imaginary As Double) As Complex ' Создание нового комплексного числа
cxNew.R = Real: cxNew.i = Imaginary
End Function
Public Function cxPolar(ByVal Magnitude As Double, ByVal Phase As Double) As Complex ' Создание комплексного числа по полярным координатам
cxPolar.R = Magnitude * Cos(Phase): cxPolar.i = Magnitude * Sin(Phase)
End Function
Public Function cxNeg(Op As Complex) As Complex ' Возвращает аддитивную инверсию указанного комплексного числа
cxNeg.R = -Op.R: cxNeg.i = -Op.i
End Function
Public Function cxInv(Op As Complex) As Complex ' Возвращает обратную величину комплексного числа
Dim Ab2 As Double
Ab2 = Op.R * Op.R + Op.i * Op.i
cxInv.R = Op.R / Ab2: cxInv.i = -Op.i / Ab2
End Function
Public Function cxAdd(Op1 As Complex, Op2 As Complex) As Complex ' Сложение комплексных чисел
cxAdd.R = Op1.R + Op2.R
cxAdd.i = Op1.i + Op2.i
End Function
Public Function cxSub(Op1 As Complex, Op2 As Complex) As Complex ' Вычитание комплексных чисел
cxSub.R = Op1.R - Op2.R
cxSub.i = Op1.i - Op2.i
End Function
Public Function cxMul(Op1 As Complex, Op2 As Complex) As Complex ' Умножение комплексных чисел
cxMul.R = Op1.R * Op2.R - Op1.i * Op2.i
cxMul.i = Op1.R * Op2.i + Op1.i * Op2.R
End Function
Public Function cxDiv(Op1 As Complex, Op2 As Complex) As Complex ' Деление комплексных чисел
Dim R2 As Double, i2 As Double
R2 = Op2.R * Op2.R: i2 = Op2.i * Op2.i
cxDiv.R = (Op1.R * Op2.R + Op1.i * Op2.i) / (R2 + i2)
cxDiv.i = (Op1.i * Op2.R - Op1.R * Op2.i) / (R2 + i2)
End Function
Public Function cxDgr(Op As Complex, ByVal Degree As Long) As Complex ' Возведение в степень комплексного числа
Dim Md As Double, Ar As Double
Md = cxMod(Op): Ar = cxArg(Op): Md = Md ^ Degree: Ar = Ar * Degree
cxDgr.R = Md * Cos(Ar): cxDgr.i = Md * Sin(Ar)
End Function
Public Function cxSqr(Op As Complex) As Complex ' Квадратный корень комплексного числа
Dim M As Double, A As Double
M = Sqr(cxMod(Op)): A = cxArg(Op) / 2
cxSqr.R = M * Cos(A): cxSqr.i = M * Sin(A)
End Function
Public Function cxMod(Op As Complex) As Double ' Модуль комплексного числа
Dim R2 As Double, i2 As Double
R2 = Op.R * Op.R: i2 = Op.i * Op.i
cxMod = Sqr(R2 + i2)
End Function
Public Function cxPhase(Op As Complex) As Double ' Фаза комплексного числа
cxPhase = Atan2(Op.i, Op.R)
End Function
Public Function cxArg(Op As Complex) As Double ' Аргумент, эквивалентно фазе
If Op.i = 0 Then
If Op.R >= 0 Then cxArg = 0 Else cxArg = PI
ElseIf Op.R = 0 Then
If Op.i >= 0 Then cxArg = PI2 Else cxArg = -PI2
Else
If Op.R > 0 Then
cxArg = Atn(Op.i / Op.R)
ElseIf Op.R < 0 And Op.i > 0 Then
cxArg = PI + Atn(Op.i / Op.R)
ElseIf Op.R < 0 And Op.i < 0 Then
cxArg = -PI + Atn(Op.i / Op.R)
End If
End If
End Function
Public Function cxExp(Op As Complex) As Complex ' Возвращает число e, возведенное в степень, определяемую комплексным числом
cxExp.R = Exp(Op.R) * Cos(Op.i): cxExp.i = Exp(Op.R) * Sin(Op.i)
End Function
Public Function cxAddReal(Op1 As Complex, Op2 As Double) As Complex ' Сложение вещественного и комплексного числа
cxAddReal.R = Op1.R + Op2
cxAddReal.i = Op1.i
End Function
Public Function cxSubReal(Op1 As Complex, Op2 As Double) As Complex ' Вычитание из комплексного числа вещественного
cxSubReal.R = Op1.R - Op2
cxSubReal.i = Op1.i
End Function
Public Function cxRealSub(Op1 As Double, Op2 As Complex) As Complex ' Вычитание из действительного числа комплексного
cxRealSub.R = Op1 - Op2.R
cxRealSub.i = -Op2.i
End Function
Public Function cxMulReal(Op1 As Complex, Op2 As Double) As Complex ' Умножение комплексного числа на вещественное
cxMulReal.R = Op1.R * Op2
cxMulReal.i = Op1.i * Op2
End Function
Public Function cxDivReal(Op1 As Complex, Op2 As Double) As Complex ' Деление комплексного числа на вещественное
Dim R2 As Double
R2 = Op2 * Op2
cxDivReal.R = (Op1.R * Op2) / R2
cxDivReal.i = (Op1.i * Op2) / R2
End Function
Public Function cxRealDiv(Op1 As Double, Op2 As Complex) As Complex ' Деление действительного числа на комплексное
Dim R2 As Double, i2 As Double
R2 = Op2.R * Op2.R: i2 = Op2.i * Op2.i
cxRealDiv.R = (Op1 * Op2.R) / (R2 + i2)
cxRealDiv.i = (-Op1 * Op2.i) / (R2 + i2)
End Function
Public Function cxAddImg(Op1 As Complex, Op2 As Double) As Complex ' Сложение комплексного числа и мнимого коэффициента
cxAddImg.R = Op1.R
cxAddImg.i = Op1.i + Op2
End Function
Public Function cxSubImg(Op1 As Complex, Op2 As Double) As Complex ' Вычитание из комплексного числа мнимого коэффициента
cxSubImg.R = Op1.R
cxSubImg.i = Op1.i - Op2
End Function
Public Function cxImgSub(Op1 As Double, Op2 As Complex) As Complex ' Вычитание из мнимого коэффициента комплексного
cxImgSub.R = -Op2.R
cxImgSub.i = Op1 - Op2.i
End Function
Public Function cxMulImg(Op1 As Complex, Op2 As Double) As Complex ' Умножение комплексного числа на мнимый коэффициент
cxMulImg.R = -Op1.i * Op2
cxMulImg.i = Op1.R * Op2
End Function
Public Function cxDivImg(Op1 As Complex, Op2 As Double) As Complex ' Деление комплексного числа на мнимый коэффициент
Dim i2 As Double
i2 = Op2 * Op2
cxDivImg.R = (Op1.i * Op2) / i2
cxDivImg.i = (-Op1.R * Op2) / i2
End Function
Public Function cxImgDiv(Op1 As Double, Op2 As Complex) As Complex ' Деление мнимого коэффициента на комплексное число
Dim R2 As Double, i2 As Double
R2 = Op2.R * Op2.R: i2 = Op2.i * Op2.i
cxImgDiv.R = (Op1 * Op2.i) / (R2 + i2)
cxImgDiv.i = (Op1 * Op2.R) / (R2 + i2)
End Function
Public Function cxEq(Op1 As Complex, Op2 As Complex, _
Optional NumDigitsAfterDecimal As Long = -1) As Boolean ' True - если комплексные числа равны
If NumDigitsAfterDecimal = -1 Then
If Op1.R = Op2.R And Op1.i = Op2.i Then cxEq = True
Else
If Round(Op1.R, NumDigitsAfterDecimal) = Round(Op2.R, NumDigitsAfterDecimal) And _
Round(Op1.i, NumDigitsAfterDecimal) = Round(Op2.i, NumDigitsAfterDecimal) Then cxEq = True
End If
End Function
Public Function cxAbs(Op As Complex) As Double ' Абсолютное значение комплексного числа
If Op.i = 0 Then
cxAbs = 0
ElseIf Op.R > Op.i Then
cxAbs = Sqr(1 + (Op.i * Op.i) / (Op.R * Op.R))
ElseIf Op.R <= Op.i Then
cxAbs = Sqr(1 + (Op.R * Op.R) / (Op.i * Op.i))
End If
End Function
Public Function cxConj(Op As Complex) As Complex ' Сопряжение комплексного числа
cxConj.R = Op.R
cxConj.i = -Op.i
End Function
Public Function cxLog(Op As Complex) As Complex ' Натуральный логарифм комплексного числа
Dim M As Double, A As Double
M = cxMod(Op): A = cxArg(Op)
cxLog.R = Log(M): cxLog.i = A
End Function
Public Function cxLogX(Op As Complex, Base As Double) As Complex ' Логарифм комплексного числа по основанию Х
Dim M As Double, A As Double, Nc As Complex
M = cxMod(Op): A = cxArg(Op): Nc.R = Log(Base)
cxLogX.R = Log(M): cxLogX.i = A
cxLogX = cxDiv(cxLogX, Nc)
End Function
Public Function cxSin(Op As Complex) As Complex ' Синус комплексного числа
cxSin.R = Sin(Op.R) * Cosh(Op.i): cxSin.i = Cos(Op.R) * Sinh(Op.i)
End Function
Public Function cxCos(Op As Complex) As Complex ' Косинус комплексного числа
cxCos.R = Cos(Op.R) * Cosh(Op.i): cxCos.i = -Sin(Op.R) * Sinh(Op.i)
End Function
Public Function cxTan(Op As Complex) As Complex ' Тангенс комплексного числа
Dim C2 As Double, S2 As Double
C2 = Cos(Op.R): C2 = C2 * C2: S2 = Sinh(Op.i): S2 = S2 * S2
cxTan.R = (Sin(Op.R) * Cos(Op.R)) / (C2 + S2)
cxTan.i = (Sinh(Op.i) * Cosh(Op.i)) / (C2 + S2)
End Function
Public Function cxCtg(Op As Complex) As Complex ' Котангенс комплексного числа
Dim C2 As Double, S2 As Double
C2 = Sin(Op.R): C2 = C2 * C2: S2 = Sinh(Op.i): S2 = S2 * S2
cxCtg.R = (Sin(Op.R) * Cos(Op.R)) / (C2 + S2)
cxCtg.i = -(Sinh(Op.i) * Cosh(Op.i)) / (C2 + S2)
End Function
Public Function cxSec(Op As Complex) As Complex ' Секанс комплексного числа
Dim C2 As Double, S2 As Double
C2 = Cos(Op.R): C2 = C2 * C2: S2 = Sinh(Op.i): S2 = S2 * S2
cxSec.R = (Cos(Op.R) * Cosh(Op.i)) / (C2 + S2)
cxSec.i = -(Sin(Op.R) * Sinh(Op.i)) / (C2 + S2)
End Function
Public Function cxCsc(Op As Complex) As Complex ' Косеканс комплексного числа
Dim C2 As Double, S2 As Double
C2 = Sin(Op.R): C2 = C2 * C2: S2 = Sinh(Op.i): S2 = S2 * S2
cxCsc.R = (Sin(Op.R) * Cosh(Op.i)) / (C2 + S2)
cxCsc.i = (Cos(Op.R) * Sinh(Op.i)) / (C2 + S2)
End Function
Public Function cxAsin(Op As Complex) As Complex ' Арксинус комплексного числа
cxAsin = cxMulImg(cxLog(cxAdd(cxMulImg(Op, 1), cxSqr(cxRealSub(1, cxMul(Op, Op))))), -1)
End Function
Public Function cxAcos(Op As Complex) As Complex ' Арккосинус комплексного числа
cxAcos = cxAddReal(cxMulImg(cxLog(cxAdd(cxMulImg(Op, 1), cxSqr(cxRealSub(1, cxMul(Op, Op))))), 1), PI2)
End Function
Public Function cxAtan(Op As Complex) As Complex ' Арктангенс комплексного числа
Dim Iz As Complex
Iz = cxMulImg(Op, 1)
cxAtan = cxMulImg(cxSub(cxLog(cxRealSub(1, Iz)), cxLog(cxAddReal(Iz, 1))), 0.5)
End Function
Public Function cxActg(Op As Complex) As Complex ' Арккотангенс комплексного числа
cxActg = cxMulImg(cxSub(cxLog(cxDiv(cxSubImg(Op, 1), Op)), cxLog(cxDiv(cxAddImg(Op, 1), Op))), 0.5)
End Function
Public Function cxAsec(Op As Complex) As Complex ' Арксеканс комплексного числа
cxAsec = cxAcos(cxDgr(Op, -1))
End Function
Public Function cxAcsc(Op As Complex) As Complex ' Арккосеканс комплексного числа
cxAcsc = cxAsin(cxDgr(Op, -1))
End Function
Public Function cxSinh(Op As Complex) As Complex ' Гиперболический синус комплексного числа
cxSinh = cxMulImg(cxSin(cxMulImg(Op, 1)), -1)
End Function
Public Function cxCosh(Op As Complex) As Complex ' Гиперболический косинус комплексного числа
cxCosh = cxCos(cxMulImg(Op, 1))
End Function
Public Function cxTanh(Op As Complex) As Complex ' Гиперболический тангенс комплексного числа
cxTanh = cxMulImg(cxTan(cxMulImg(Op, 1)), -1)
End Function
Public Function cxCtgh(Op As Complex) As Complex ' Гиперболический котангенс комплексного числа
cxCtgh = cxRealDiv(1, cxTanh(Op))
End Function
Public Function cxSech(Op As Complex) As Complex ' Гиперболический секанс комплексного числа
cxSech = cxRealDiv(1, cxCosh(Op))
End Function
Public Function cxCsch(Op As Complex) As Complex ' Гиперболический косеканс комплексного числа
cxCsch = cxRealDiv(1, cxSinh(Op))
End Function
Public Function cxAsinh(Op As Complex) As Complex ' Гиперболический ареасинус комплексного числа
cxAsinh = cxLog(cxAdd(Op, cxSqr(cxAddReal(cxMul(Op, Op), 1))))
End Function
Public Function cxAcosh(Op As Complex) As Complex ' Гиперболический ареакосинус комплексного числа
cxAcosh = cxLog(cxAdd(Op, cxMul(cxSqr(cxAddReal(Op, 1)), cxSqr(cxSubReal(Op, 1)))))
End Function
Public Function cxAtanh(Op As Complex) As Complex ' Гиперболический ареатангенс комплексного числа
cxAtanh = cxMulReal(cxLog(cxDiv(cxAddReal(Op, 1), cxRealSub(1, Op))), 0.5)
End Function
Public Function cxActgh(Op As Complex) As Complex ' Гиперболический ареакотангенс комплексного числа
cxActgh = cxMulReal(cxLog(cxDiv(cxAddReal(Op, 1), cxSubReal(Op, 1))), 0.5)
End Function
Public Function cxAsech(Op As Complex) As Complex ' Гиперболический ареасеканс комплексного числа
Dim Z As Complex
Z = cxRealDiv(1, Op)
cxAsech = cxLog(cxAdd(Z, cxSqr(cxAddReal(cxMul(Z, Z), 1))))
End Function
Public Function cxAcsch(Op As Complex) As Complex ' Гиперболический ареакосеканс комплексного числа
Dim Z As Complex
Z = cxRealDiv(1, Op)
cxAcsch = cxLog(cxAdd(Z, cxMul(cxSqr(cxAddReal(Z, 1)), cxSqr(cxSubReal(Z, 1)))))
End Function |